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Preface 

D ue to excellent accuracy, repeatability, and several other 
unparalleled and exotic features, computer numerical control 
(CNC) machines have now virtually completely replaced man­

ual machines in the manufacturing industry. Even small manufactur­
ing units are now using CNC machines because these prove to be 
cheaper in the long run. In fact, "why CNC?" is not at all a topic of 
discussion these days! 

CNC machines with recently introduced macro programming 
features have become so powerful that not using the macro features is 
like using the latest mobile handset only for exchanging voice 
messages. Unfortunately, there is a lack of adequately trained personnel 
in this area. The main reason is that because this is an industry-oriented 
subject, engineering colleges / polytechnics do not deal with it in 
sufficient detail. Even the commercial CNC training schools generally 
provide only basic CNC training, and the few training school that do 
provide advanced training charge exorbitantly. The worst part is that, 
because of professional competition, people are generally unwilling to 
share their knowledge with their colleagues; in such a scenario, it is 
difficult to learn macro programming, which is often rightly described 
as the best kept secret of CNC. 

The root cause of hindrance in learning macro programming is 
the lack of suitable books in this area. Even the manuals which come 
with the machines do not serve the purpose because, though these 
do describe all the features of the language, these are actually 
reference books not written in a textbook sfyle. As a result, while 
these are good for getting detailed information about some specific 
programming feature, one cannot really learn the language in a 
systematic manner from them. What is required is a text with step­
by-step instructions, starting from the very basic principles and 
gradually proceeding further in order of complexity. This was the 
prime motivation for the present book. It is a self-sufficient text, 
designed to be read from beginning until the end, in chapter sequence. 
No external help, in the form of any other book or an instructor, 
would be needed. One can learn simply by self-study. 

XI 
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XII Preface 

The present text specifically deals with the Fanuc version of macro 
programming language called Custom Macro B (Custom Macro A is 
outdated and no longer used), with reference to Oi series controls. 
Though the language is the same on all control versions of Fanuc (as 
well as on Fanuc-compatible controls), some of the system variables 
and control parameters differ on different control versions. Therefore, 
one would need to verify these from the respective machine manuals 
and make necessary changes wherever required. 

Finally, note that though every care has been taken to ensure that 
the programs given in the text are error free and work as intended, 
neither the author nor the publisher assumes any responsibility for any 
inadvertent error that might have crept in. As a rule of thumb, one should 
always check the simulation of a new program before actual execution. 

Suggestions for further improvement would be gratefully 
acknowledged. Any feedback can be sent directly to the author at 
sinha_nsit@yahoo.co.uk. 

S. K. Sinha 
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CHAPTER 1 
Introduction 

Numerical control is an application of digital technology to 
control a machine tool by actuating various drive motors, 
relays, etc. by a series of coded instructions, called part pro­

grams. These machines were initially called numerically controlled (NC) 
machines. NC technology was made commercially available in mid-
1950s. Later, as the technology advanced, a computer was made an 
integral part of the machine, and most of the functions of the machine 
were controlled through software rather than dedicated hardware for 
each function. Such machines were called computer numerical control 
(CNC) machines. NC machines are not manufactured anymore, 
though we still use this term for referring to this technology. 

Due to excellent accuracy, repeatability, and several other unpar­
alleled and exotic features, the CNC machines have now virtually 
completely replaced the manual machines in the manufacturing 
industry. Even small manufacturing units are now using CNC 
machines, because these prove to be cheaper in the long run. In fact, 
"why CNC?" is not at all a topic of discussion these days. 

However, as with any other computer application, it is imperative 
to develop good and efficient programs to exploit the full potential of 
CNC machines. Unfortunately, there is a lack of adequately trained 
manpower in this area. The main reason is that the age-old curriculum 
of engineering colleges/polytechnics does not deal with CNC pro­
gramming in detail. Moreover, if you are a practicing engineer, you 
may have realized that the few people in industry who indeed have 
good programming knowledge are not too willing to share their 
knowledge and experience with others, for obvious reasons! And, 
learning on one's own is not really so easy, particularly if the subject is 
complex and the information is available in a scattered manner. 

To cater to this need, a number of commercial CNC training 
schools have come up recently. However, most of these provide only 
basic CNC training. Advanced CNC training is provided by very 
few training schools in the whole world. Even the relevant books, 
presented in a self-contained textbook style, are not available. And, 
manuals / handbooks are mainly useful for reference only, when one 
wants to see a detailed description of some specific feature. This 
makes learning by self-study difficult, especially for a newcomer who 

1 
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2 Chap t er One 

does not even know how to start. In fact, if you want to master a com­
plex subject, to which you are completely new, on your own, the first 
thing you need to know is how to start learning. And, if you fail to 
choose the right track, very soon the subject will appear frustratingly 
complex and boring. So, a methodical and step-by-step approach is 
extremely important. 

This book aims at fulfilling this need. If you have some basic 
knowledge of programming and operation of CNC machines, this 
book will help you in learning the advanced features of CNC 
machines, features you may not even have heard of. And, the most 
important thing is that, the book is designed in such a manner that 
you will learn on your own! 

We will first discuss the various part programming techniques, 
and their areas of application. This will be followed by a discussion 
of an advanced programming technique which adds a whole new 
dimension to the conventional CNC programming. The remaining 
chapters of the book are devoted to a detailed description of this 
technique. 

1.1 Part Programming Techniques 
A CNC machine is only as good as the part programs being used for 
machining. The role of the machine operator is generally limited to 
clamping and unclamping the workpiece, for which even a semi­
skilled worker would be good enough. The quality and efficiency of 
production depends mainly on the programming skill of the pro­
grammer. The programmer need not be an expert machinist, but he 
must have a very good knowledge of shop floor practices. In addi­
tion, he must know the available control features of his machine. It is 
only then, efficient part programs, producing good results, can be 
developed. A CNC machine works just like an "obedient slave," 
doing exactly what it is instructed to do, in a very precise manner. 
Hence, a CNC machine would be worth its name, only if the instruc­
tions given to it, through the part programs, offer the best possible 
solution to perform a given task. 

Broadly speaking, there are four different ways of preparing part 
programs, described in brief in the following sections. 

Conventional Part Programming 
Conventional part programming, which is a simple G-code/ M-code 
programming, suffers from several limitations and has limited scope. 
If one needs to machine only limited types of workpieces in a routine 
manner, without bothering much about the efficiency of the produc­
tion activity, conventional part programming would generally be 
adequate. The limitation of conventional programming is that it does 

www.EngineeringBooksPdf.com



Introduction 3 

not allow the use of variables, mathematical operations, functions, 
logical statements, looping, and the like in a program. In other words, 
it does not have even the basic features of a typical computer lan­
guage such as PASCAL. It is just a rigid type program for a particular 
requirement. This obviously limits the scope of programs to a great 
extent. It is not possible to write an "intelligent" part program with 
built-in logic for different requirements. In fact, as we will see later, 
there are a number of applications where conventional part program­
ming cannot be used. It only serves the limited purpose for which it 
was designed. 

Conversational Part Programming 
Even conventional part programming is fairly complex. So, for the 
purpose of simplifying programming for certain common applica­
tions, conversational or lead-through programming (referred to as blue 
print programming or direct dimension programming) was introduced, 
which enables users to even without having adequate programming 
experience, easily develop suitable part programs. The programmer 
need not know the part programming language in detail; he only has 
to know what is to be done in what sequence, and with what cutting 
parameters. The control prompts him for all the required informa­
tion, in an interactive manner. This method of programming, how­
ever, suffers from the inherent limitation of being applicable only to 
certain specific geometries. So, even though it is possible to quickly 
write efficient programs for some common applications, this method 
is useless for special requirements. In reality, conversational program­
ming is only a small subset of what can be done with conventional 
part programming technique. In fact, conversational programming is 
not meant for qualified engineers. 

Part Programming Using CAM Software 
As long as only two axes of a machine are required to be simultane­
ously controlled (including helical interpolation), which is usually 
the case in most of the practical applications, it is possible to write 
suitable part programs manually, unless the geometry is nonstan­
dard, for example, involving a parabolic segment. For nonstandard 
and / or three-dimensional geometries, such as die machining, man­
ual development of part programs might become too tedious or even 
impossible in certain cases. Several CAM softwares have been devel­
oped, which generate the required toolpath for the desired machin­
ing, and automatically prepare a part program to suit the selected 
control version. However, the basic purpose of CAM software is to 
calculate what cannot be calculated manually (e.g., the toolpath for 
a S-axis machining where it is desirable to always keep the axis of the 
tool perpendicular to the surface it is machining). So, even though it 
can generate a complex toolpath, and give certain machining-related 
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information such as machining time, interference check, etc., this is all 
it can do. Broadly speaking, it does not add additional features to 
conventional part programming. The difference between conventional 
part programming and computer-aided part programming is very 
much like the difference between manual arithmetic calculations and 
calculations using a calculator. So, CAM software is useful only for the 
purpose for which it is designed. It does not offer total manufacturing 
solution. There are requirements, as we will see later, for which it 
becomes simply useless. 

Macro Programming 
In the 1990s, basic features of high-level computer languages were 
incorporated in the conventional part programming language. The 
new programming language was called macro programming, the fea­
tures of which closely resemble the BASIC computer language. Over 
the years, macro programming has seen steady development. It is 
now quite advanced, except that alphanumeric characters still cannot 
be used as variable names, among certain other limitations. Macro 
programming, as we will see later, has completely changed the way 
CNC machines are programmed these days, opening up endless pos­
sibilities, limited only by the imagination of the programmer. 

Comparison among the Four Methods 
Each out of the four ways to prepare part programs has its own area 
of application, serving its specific purpose. Any comparison among 
these is thus meaningless. Macro programming, however, offers sev­
eral tools for enhancing productivity, which is not possible with any 
of the other three methods. The emphasis today is not just on automa­
tion, to boost productivity; it is also on flexible automation, so as to 
respond quickly to the fast-changing market requirements. Macro 
programming can make the part programs so flexible with built-in 
logic that the same program can be used for different machining 
requirements. Moreover, in many cases, a CNC machine can be pro­
grammed to make its own decision in different situations, without 
any intervention from the operator. All this results in unparalleled 
productivity enhancement. 

1.2 Certain Applications of Macro Programming 
Many manufacturing units have excellent applications for macro 
programming, but they are not even aware of this fact. And, if one 
does not know that there is an application for something, one will 
never consider learning it, let alone using it! In fact, most of the 
modern CNC machines have this capability as a built-in feature 
(optional on some machines), but many users do not even know 
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this. In today's world of cut-throat competition, one cannot really 
afford to be totally ignorant of such a powerful feature of CNC 
machines. Given the enhancements that this kind of programming 
brings, it is surprising that most of the machine tool builders (MTB), 
control manufacturers, and even commercial training schools do 
not say much about it. 

The major application areas of macro programming are discussed 
in the following sections. 

Complex Motions 
Most CNC controls provide only linear and circular motions. As a 
result, it is not possible, for example, to do parabolic turning on a 
lathe or to cut an elliptical groove on a milling machine. For such 
applications, one has to take help of some external computer pro­
gramming language for generating the toolpath, as a chain of very 
small straight line segments, joined sequentially by linear interpola­
tion (GOl). The other way would be to use CAM software. However, 
macro programming, which has all the relevant features of a high­
level computer programming language, enables us to easily generate 
any type of complex motion for which mathematical equations are 
available. It also obviates the problem of loading into the CNC's 
RAM, the extremely large file generated by the external computer 
program or the CAM software, which sometimes makes macro pro­
gramming a much better option. While macro programming cannot 
completely replace CAM software, it can certainly do many things 
that may not be possible without the use of CAM software. 

Families of Parts 
Almost all companies have some applications that fit into this cate­
gory. Part programming time can be reduced by developing paramet­
ric programs for families of parts. An example is bolt-hole drilling on a 
flange. While all the flanges may belong to the same family by virtue 
of similarity in design and production method, they may all be actu­
ally different. For example, the number of holes, the depth of holes 
(i.e., the thickness of the flange), and the diameter of the pitch circle 
may be different in different flanges. Even the workpiece materials 
may be different, requiring different feedrates and rpms. These dif­
ferences may also necessitate the use of different machining cycles 
(G81, G82, etc.) in different flanges. 

This means that even though the machining methods for all the 
flanges are essentially the same, all the programs would be somewhat 
different. However, a single program, using the macro programming 
features, would do the job. We only have to identify the varying enti­
ties and write a program with these entities as variables, defined in the 
beginning of the program. It is also possible to define a subroutine, 
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with the variable quantities as its arguments. For a particular flange, 
the main program (i .e., the program at the top-most level in nested 
programs) can simply call the subroutine, with the desired values for 
its arguments. The subroutine would be executed with the specified 
values for the variable quantities. The programming methodology is 
very similar to that in any high-level computer language. The major 
difference lies in the way the variables are designated. 

Note that a subroutine called without an argument list is called a 
subprogram, whereas if it is called with an argument list, it is called a 
macro program (or, simply a macro). A built-in macro, which is made 
available on the machine by the machine tool builder, is called a 
machine macro, and a user-defined macro is referred to as a custom 
macro. Subprograms are called by M98 (which does not permit an 
argument list), whereas macros are called by G65 or G66 (which per­
mit an argument list) . Note that G65 / G66 need not necessarily have 
an argument list (though this is a rare possibility). A macro is designed 
to be called with an argument list. A subprogram, on the other hand, 
is designed to be called without an argument list. The same program 
behaves like a subprogram if it is called by M98, whereas it behaves 
like a macro if called by G65 or G66 (with or without an argument list). 
The difference between a subprogram and a macro is explained in 
detail in Chaps. 6 and 7. 

Using a macro for a family of parts is often referred to as parametric 
programming; the arguments of the macro are the parameters that 
define the specific function of the macro. Here, the term "parameter" 
is used in the mathematical sense. It is not even remotely related to 
control parameters, which define the default settings of the machine. 
Control parameters are also referred to as system parameters, CNC / 
PMC parameters, machine parameters, or, simply, parameters. 

It is also possible to define a new G-eode (say, GlOO) or a new M­
code (say, MlOO), corresponding to a macro. Then, such a macro can 
also be called by the defined G- or M-codes. In fact, the new codes 
become available to all the programs on that particular machine, 
and all the programmers can use them. This simplifies programming 
as the programmers need not even know how to call a macro; they 
only need to know how to use the new codes that become similar to 
the ordinary G-codes/M-codes. Of course, an expert programmer 
has to develop the new codes initially. 

Custom Canned Cycles 
CNC machines are equipped with a large number of canned cycles 
for different machining requirements, which simplify programming 
to a great extent. For example, if one has to generate G71 (multiple 
turning cycle) type toolpath using GOO and GOl, it would be pro­
hibitively complex and lengthy because of enormous number of 
mathematical calculations involved. The same exercise would have 
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to be repeated for every job with a different geometry. But, G71 is 
just a two-line code, for all geometries. 

However, a situation may arise when no predefined canned cycle 
would be quite suitable for a particular application. For example, if a 
very deep hole is to be drilled, it may be desirable to progressively 
reduce the peck length in subsequent pecks, to allow the chips to come 
out of the hole easily, especially when the tool is deep inside the hole. 
Such a canned cycle is not available on any CNC machine. All the 
peck-drilling cycles use uniform peck length throughout the depth of 
the hole (except the last peck, which is adjusted to suit the hole depth). 
However, using the macro programming technique, it is possible to 
write a program with varying peck length (as per user-defined logic), 
and as mentioned earlier, it is also possible to define a new G-eode for 
such a program, which can, then, be very conveniently used the way 
a built-in canned cycle is used. Development of new canned cycles 
customizes CNC machines, as per individual needs. 

"Intelligent" Programs 
Macro programming allows the use of conditional statements (IF_ 
THEN,) to be used with conditional operators (equal to, not equal to, 
less than, less than or equal to, greater than, and greater than or equal to), 
logical operators (AND, OR, and XOR), conditional and uncondi­
tional branching (IF _GOTO and GOTO) and loops (WHILE_DO_ 
END), apart from the usual mathematical and trigonometric func­
tions. This enables the programmer to write an "intelligent" program 
that will automatically make certain decisions based on certain input 
conditions. For example, if the specified depth of cut is too large, the 
machine can be programmed to automatically select a roughing tool. 
Similarly, appropriate drilling cycle can be automatically selected by 
the machine depending on the hole parameters. The possibilities are 
unlimited. Practically any logic that you can think of can be incorpo­
rated in a macro program, and then you do not have to worry about 
a "what-if" type situation. The machine knows what it should do in 
specific situations. 

It is also possible to insert error traps in a program. Under certain 
specified conditions, the machine will automatically pause or abort 
the execution of a program and display the programmed error mes­
sage. After the remedial action is taken by the operator, the paused 
program can be resumed from that point by pressing the CYCLE 
START button again. All this makes the program quite flexible, which 
improves machining quality as well as productivity-an important 
step toward flexible automation. 

Probing 
Probing on a CNC machine has several advantages, because the 
inspection results are immediately available, at a small fraction of the 
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cost of having a separate CMM facility. There is, however, a general 
perception that since the machine is very accurate, there is no need to 
measure the obtained dimensions. This is too optimistic a view. The 
tool may wear out to an unacceptable extent, or it might even break. If 
the critical dimensions are not checked at least occasionally, a large batch 
of defective parts might be produced before realizing the problem. 

The scope of probing is not limited to just measuring certain dimen­
sions of a part or inspecting the tools for the purpose of quality control. 
It is also possible to drastically reduce the setup time by automating 
the tool offset setting procedure. This is extremely useful if the initial 
sizes of different workpieces are not exactly same, which then requires 
that the offset setting procedure be repeated for every new workpiece. 

Probing also obviates the need for extremely accurate fixtures, 
which are expensive. Any inaccuracy in clamping the workpiece can 
be measured by the probe, and the corrective logic may be given in 
the program. In the course of machining, the machine may be pro­
grammed to automatically make certain decisions based on probing 
results. All this leads to better quality and increased productivity at a 
lower cost. However, probing would not be possible unless the 
machine has macro programming capability. 

Machine Status Information/Manipulation 
Many a time it is desirable to know the control conditions of a 
machine, such as offset distances, the current position of the tool, the 
current spindle speed/ feedrate / tool number, the active modal codes 
of the various groups of G-eodes (e.g., whether G90 or G91 of Group 
3 is active on a machining centre. Recall that in every group of G­
eodes, except those belonging to Group 0 which are nonmodal codes, 
one code remains active until it is replaced by another code from the 
same group.) The number of parts produced, the current date / time, 
the incremental time of machine operation, etc. Such data are made 
available through a number of system variables (described in detail in 
Chap. 3,) which can be used in a program, for making certain deci­
sions. It is also possible to take the printout of such data on a printer 
connected to the machine. Some of these variables, such as the vari­
able for storing the current tool position, are read-only types that 
cannot be modified. Other variables, such as those for offset distances, 
can be modified through the program, to alter the machine behavior. 
Such a communication with the machine, to know or alter its control 
status, is possible only through the macro programming feature. 

Communication with External Devices 
A programmable logic controller (PLC) is an integrated part of the CNC 
(control) hardware. Generally speaking, the CNC controls the motion 
of the tool, whereas the PLC controls other machine functions . The 
PLC can be programmed to control the various automatic systems of 
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the machine, as per our requirements. Most controls use the familiar 
ladder diagram for programming the PLC. 

This PLC can also be used to accept input signal or pass on output 
signal from/ to some external device, using macro programming fea­
tures. This allows two-way communication between the machine and 
the outside world. For example, a sensor can be used to find out whether 
or not a pallet is loaded (input signal). The machining cycle would not 
start unless the pallet is loaded. And, if the pallet is not loaded, an exter­
nal lamp would be flashed (output signal). Finally, when a machining 
cycle is complete, the part count would be incremented by one and 
displayed on an external display board. And, when the part count 
becomes equal to a predefined number, the machine would stop, and an 
external buzzer would be sounded. Such a sequence of operation would 
be useful in case of an unattended, automatic loading/unloading on the 
machine. Similarly, there are several other useful and innovative appli­
cations of automation in the production process, which would result in 
higher productivity and better quality. 

The macro programming feature virtually puts "life" in a CNC 
machine and you can make it respond in the manner you want, in 
some specific situation. What the machine can be made to do is lim­
ited only by the ingenuity of the programmer. Practically, any logic, 
that one can think of, can be implemented on it. Another issue is that 
not many people are aware of such features of modern CNC machines. 
Today, using a CNC machine only for conventional machining appli­
cations is like using a 64-bit processor, 2-GB RAM computer only for 
word processing! 

1.3 Does My Machine Have Macro Capability? 
This is the most pertinent question at this stage, because unless the 
machine on which one works has macro capability, there is no point 
in learning macro programming. Although macro programming has 
now become a standard feature on most controls, it is still an optional 
feature on some. So, if a new machine is to be purchased, this feature 
must be mentioned in the specifications. On an existing machine, 
execute some macro statement to test whether the machine has this 
option enabled, in the following manner: 

• Set proper conditions for machining (hydraulic pump ON, 
feed drives enabled, spindle rotation enabled, tailstock 
extended, chuck closed, and door closed). 

• Select manual data input (MDI) mode, using the selector switch 
on the machine operator's panel (MOP). 

• Press the PROG function key on the MDI panel. If a blank 
program screen does not appear, press PROG again. The 
blank screen displays. 
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00000 
% 

• Type #1 = 1 (or any other "harmless" macro statement, so as 
not to cause any unexpected machine behavior), followed by 
the end of block (EOB) character (which is a semicolon), and 
then press the INSERT key, on the MDI panel. 

• Press the CYCLE START button on the MOP. 

This will assign a value of 1 to the macro variable number 1. If no 
error message comes, the machine has macro programming capability 
with full functionality (the control manufacturers do not enable this 
feature with partial functionality; it will either be available or not 
available). To be doubly sure, check the value of the defined macro 
variable on the offset I setting screen: 

• Press the OFSI SET function key on the MDI panel. 

• Press the right extension key ( ~)below the display screen, if 
the MACRO soft key does not appear. Now press the MACRO 
soft key. 

This will show, on a roll-over screen (i.e., the first line reappears 
after the last line, in forward scrolling), the values stored in all the 
macro variables (001 to 033, 100 to 199, and 500 to 999, typically), which 
can be viewed using the up I down arrow keys and the page up I page 
down keys on the MDI panel. The value stored in variable number 001 
(which is the same as variable number 1) would be displayed as 
00001.000 (values are stored using eight digits), with blank fields for 
the remaining variables (a blank field indicates an undefined variable), 
except perhaps those in the 500 to 999 range, which retain the previ­
ously stored values even after power OFF. These variables, which are 
called permanent common variables, can, however, be re-defined. Press­
ing the RESET key will clear all the variables except the permanent 
common variables. A parameter setting, however, can retain the values 
of all the variables, even after RESET operation. Different types of vari­
ables are described in detail in Chap. 3. 

If the machine does not have the macro feature, it will not recog­
nize the macro statement, and will give an error message. In such a 
case, the company whose control is installed on the machine (such as 
Fanuc, Siemens, Heidenhain, etc.) has to be contacted. They will 
enable this option on the machine for a charge. It is interesting to note 
that the electronic hardware of a particular control version is the same 
for all the machines on which the standard features always remain 
available. But the control manufacturers enable (through software 
coding) only those optional features for which they receive additional 
payment. So, do not worry if your machine is not macro-enabled, just 
be willing to pay for it. However, nonstandard controls usually do 
not have macro capability. 

www.EngineeringBooksPdf.com



Introduction 11 

1.4 Aim of the Present Text 
The macro programming feature is so powerful that its applicability 
is limited only by your imagination. It has given a whole new dimen­
sion to conventional part programming. Unfortunately, the resource 
material for learning macro programming is not readily available. 
Moreover, information is available either in handbook forms or as 
application examples. Handbooks are mainly useful for reference 
purpose only, to have more details about a certain feature, and the 
application examples assume basic knowledge of the language. The 
easiest method to learn would be to study the features of the lan­
guage one by one, in order of increasing complexity, with a number 
of suitable examples. Such an approach enables one to understand 
the concepts simply by self-study. The present text is carefully 
designed with this approach only, and aims at explaining all the nec­
essary tools and techniques for developing macro programs for com­
mon applications. The present text, however, assumes a basic 
knowledge of conventional part programming. Macro program­
ming is only its extension. So, it is necessary to brush up the basic 
programming concepts before venturing into the fascinating world of 
macro programming. 

The subsequent chapters describe the features of macro program­
ming in detail. Although the general discussion is not brand specific, 
the specific descriptions and programming examples follow Fanuc's 
Custom Macro B language. The earlier version Custom Macro A is out­
dated and no longer used. Our discussion will generally revolve 
around Fanuc Oi series controls. 

Today, Fanuc enjoys over 50 percent market share in CNC con­
trol, worldwide. In India, its share is over 75 percent. This has made 
Fanuc control the de facto standard, which is the main reason for 
focusing on Custom Macro B in this text. In fact, many smaller com­
panies have specially designed their controls so as to match the fea­
tures of Fanuc control. Such controls are referred to as emulated Fanuc 
controls, a number of which are available in the market today. 
Such controls, however, do not ensure 100 percent similarity with 
Fanuc control. They still have a market because their prices are much 
lower compared to original Fanuc control. The emulated Fanuc con­
trols generally do not have macro programming capability. 

1.5 How to Use This Book 
This book is written in textbook style. It is designed to be read sequen­
tially, from the beginning till the end. Proceed further without skip­
ping any chapter or section (unless suggested otherwise), because this 
may cause difficulty in understanding certain concepts discussed sub­
sequently. Macro programming is a typical high-level programming 
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language that has to be learnt step by step and thoroughly. The more 
slowly you move, the faster you will reach your destination, because 
a superficial knowledge of any programming language may land you 
in trouble anytime, and you may not even be able to figure out your 
mistakes. 

A simple reading, however, will not be sufficient, because it is not 
possible to remember everything unless it is practiced rigorously. So, 
as far as possible, the readers should verify all the programming 
statements on their machines. For example, if it is stated that #0.5 is 
equivalent to #1, it can be tested by executing a one-line program, 
#0.5 = 1; which should assign a value of 1 to variable #1. 

Simple statements can be verified in MDI mode also, without cre­
ating a new program. The default parameter setting for MDI mode, 
however, automatically erases the typed program after its execution is 
over (and it is not possible to save a program created in MDI mode). If 
some change in the previously typed program is desired, the whole 
program would need to be typed again. A change in parameter setting 
would solve this problem; this is explained in Chap. 2. With appropri­
ate parameter settings, MDI program can be deleted or modified only 
intentionally, through the editing keys on the MDI panel. 

Finally, it is important to note that there is no universally accepted 
standard for macro programming. Although all the reputed control 
manufacturers offer similar features, there are differences in their pro­
gramming methodology. This precludes the possibility of portability 
of macro programs among different controls. In fact, even among 
the different control versions of the same manufacturer, 100 percent 
portability would generally not be possible, mainly because of differ­
ences in control parameters and system variables in different control 
versions. What is important is to understand the basic concepts of 
macro programming technique. The necessary fine-tuning to suit a 
particular control version can always be done. 

Macro programming techniques are not very common knowledge 
among CNC users, many of whom are not even aware that their 
machine possibly does have such a programming feature. Unfortu­
nately, macro programming is hyped to be an extremely complex and 
sophisticated way of part programming. This has caused an undue 
hindrance in the learning process. The fact is that macro program­
ming is much simpler than a high-level programming language 
such as PASCAL. All that's needed is the willingness to learn and a 
methodical approach. The author believes that a workable knowledge 
can be acquired in just one week. Read on and find out for yourself! 
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2.1 Macro Variables 

CHAPTER 2 
Variables and 

Expressions 

A macro variable is a mathematical quantity that can assume any value 
within its allowed range. Although macro programming on Fanuc 
and similar controls has several features of a high-level computer 
programming language, it is somewhat in a primitive stage when it 
comes to the way variables are defined. It does not allow the use of 
arbitrary combinations of alphanumeric characters for designating a 
variable, for which there is a single specific way. Variables are desig­
nated with the# symbol, followed by a number (called the variable 
number), in the permissible range (which depends on the control ver­
sion). Some examples of variables are 

#1 

#10 

#100 

#1000 

#10000 

These numbers represent specific memory locations that may 
contain some positive or negative arithmetic values (if defined, i.e., if 
some value is assigned to them) or be empty (if not defined) . 

2.2 Macro Expressions 
There are two types of macro expressions: arithmetic expressions and 
conditional expressions. 

An arithmetic expression is a mathematical formula involving 
variables and/ or constants (such as 0.12, 1.2, 12, 120, etc.), with or with­
out functions (such as SIN, ACOS, SQRT, LN, etc., which are described 
in Chap. 4). A nested expression and the argument of a function must 
be enclosed within square brackets. Small brackets (parentheses) 
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cannot be used because they are used for inserting comments in a pro­
gram. An arithmetic expression evaluates to an arithmetic value. 

Examples: 
1 + #2 

# 3 + #4 * SIN[30 * [#5 I 10 ]] 

A conditional expression includes conditional operators (such as 
EQ, NE, and LT) between two variables/ constants/ arithmetic expres­
sions. It must be enclosed in square brackets. It evaluates to either 
TRUE or FALSE (these are called Boolean values) . A conditional 
expression is also referred to as a Boolean expression. 

Examples: 
[#1 EQ 0] 

[ [#2 + 1] LT [SIN[30] * #3]] 

The available macro variables cannot be used to store the result of 
a conditional expression. Only arithmetic values can be stored in 
macro variables. The Boolean TRUE/FALSE is not equivalent to the 
arithmetic 1/0. 

Examples: 
#1 10; (Stores 10.000 in variable #1) 

#2 = [ 1 LT 2] ; (illegal, as TRUE or FALSE cannot be stored in a variable) 

The manual data input (MDI) panel usually has just one key for 
the left bracket and another one for the right bracket. While typing, 
whether the bracket will appear as a square bracket or a parenthesis, 
depends on your parameter setting. If the machine has Fanuc Oi or Oi 
Mate control, set the first bit (from right), which is conventionally 
referred to as bit #0 (the eight bits are designated as #0 through #7, 
starting from the right), of parameter number 3204 to 0 for a square 
bracket, and 1 for a parenthesis: 

3204 I ·

7 

I ·

6 

I ·

5 

I ·

4 

I ·

3 

I ·

2 

I #l I •o I 

The default setting for the remaining bits is 0, which is not shown, 
for the purpose of highlighting what requires to be edited (i.e., bit #0). 
Obviously, it would not be possible to use square brackets and insert 
comments at the same time with this parameter setting. If some com­
ments are desired to be inserted in a macro program, first type / edit 
the program using square brackets, wherever required. Then change 
the parameter setting to get parentheses, for the purpose of inserting 
comments. After inserting comments, if again some corrections in the 
program involving square brackets are needed, another change in 
parameter 3204 would be required. 
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There is, however, a way to use both types of brackets, with the same 
parameter setting. For this, set parameter 3204#2 to 1 (3204#0 should 
remain 0; status of the other six bits does not affect this feature) : 

3204 I •
7 I •6 I •s I •• I •3 I :2 I #i I :o I 

Such a parameter setting displays an extended character set, as 
soft keys, in the EDIT mode, displaying "(", ")" and "@". With this 
setting, if square brackets are needed, use the bracket keys on the 
MDI panel, and if parentheses are needed, do the following (in EDIT 
mode): 

• Press PROG on MDI panel (press PROG again if the current 
program is not displayed). 

• Press the OPRT soft key. 

• Press the right extension key( ..,.. ) twice. 

• Press the C-EXT soft key. 

After this, soft keys for left parenthesis, right parenthesis, and @ 

(which can be used in the comments inserted in a program) will 
appear which can be used as and when required for editing in EDIT 
mode. However, a change in display screen will make these soft keys 
disappear. If they are needed again, the process to display them will 
have to be repeated. 

Note that the MDI panel and the LCD screen (color or mono­
chrome) come as an integral unit as well as separate units. The stand­
alone type MDI panel is larger and has more keys. So, there is a lesser 
need to use the SHIFT key for typing alphanumeric characters / arith­
metic operators, which makes typing faster. The keypad also has 
separate keys for both types of brackets, obviating the need for dis­
playing soft keys for them. 

Coming back to the discussion about macro expressions, an arith­
metic expression evaluates to a positive or negative arithmetic value, 
following the usual priority rule: bracket (innermost first) ~ function 
evaluation ~ division and multiplication~ addition and subtraction. 

Mixed mode arithmetic, that is, calculations involving both real 
and integer numbers, is permitted, which results in a real number. In 
fact, the control stores even an integer number as a real number, with 
zeroes after the decimal point. So, for example, 10 is equivalent to 
10.0, and these can be used interchangeably in all arithmetic calcula­
tions. Note that this statement is valid only for arithmetic calcula­
tions. For example, X10 may be interpreted as 10 mm or 10 J.Lm (in 
millimeter mode), depending on whether parameter 3401#0 is 1 or 0. 

The negative of the value stored in a variable can be used by put­
ting a minus sign before the variable address, but two consecutive 
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arithmetic operators (+, -,*,and / )are not allowed. In such cases, 
square brackets will have to be used: 

- #1 + 10 

10 + -#1 

10 + (-#1] 

(A valid expression) 

(An invalid expression) 

(A valid expression) 

A variable can also be designated in terms of another variable or 
an arithmetic expression, which must be enclosed within square 
brackets: 

#[#1] (#1 should contain a number in the permissible range. If, 
for example, #1 contains 10, then #[#1] is equivalent to #10. 
##1 is illegal) 

#[#1+10] (If #1 contains 10, then the referred variable is #20) 

The designation number of a variable is an integer quantity. If a 
real value is specified (which is only a theoretical possibility, as this 
situation would never arise in any practical application), it is automat­
ically rounded to the nearest integer (refer to Sec. 2.3 for the methods 
of assigning a value to a variable): 

#1 = 1.4999999; 

#[#1] 1.5000000; 

#[#1] = 1; 

#0.4999999 1; 

#0.5000000 1; 

(Stores 1.4999999 in variable #1) 

(Stores 1.5000000 in variable #1) 

(Stores 00001.000 in variable #2. A variable 
stores and displays a value using eight digits, 
with three digits after the decimal, unless the 
value cannot be expressed in this format) 

(Illegal command because it tries to assign a 
value to variable #0. Variable #0 is a pre­
defined, read-only type null variable, which 
cannot be redefined. Properties of null vari­
ables are described in detail in Sec. 2.5) 

(Stores 00001.000 in variable #1) 

2.3 Assigning a Value to a Variable 
A value can be assigned to a variable in the general format 

#i = <some value or arithmetic expression>; 

where i is the variable number. On the left-hand side, in place of i, an 
expression may also be used. Some examples are 

#1 = 10; (Stores 00010.000 in variable #1) 

#1 = #1 + 1; (Redefines #1 by storing 00011.000 in it) 

#[#1 + 10] = [10 + 20]/ 30- #1; 

#[#1] = SQRT[-#21]; 

(Stores -00010.000 in variable #21) 
(Stores 3.1622777, the rounded value up 
to eight digits, in variable #11. Rounding 
is automatically done by the control, in 
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#[#1] = SQRT[-#21] ; 

GOO W#ll ; 

Variables and Expressions 

all cases of assigning a value to a variable. 
Only eight decimal digits are stored) 

(Causes a displacement of 3.162 mm, the 
rounded value up to three digits after 
decimal, as the least input increment for 
displacement is 0.001 mm, in millimeter 
mode. In an NC statement, rounding of 
axis values, up to the least input increment 
of the machine, is automatically done by 
the control, if the values are specified in 
terms of variables. Refer to Sec. 4.4 also) 

The term "NC statement" has been used without formally defin­
ing it. It is a program block involving at least one NC address, such as G, 
M, F, S, T, X, Y, and Z, except codes for calling a macro program (such 
as G65, G66, etc.) On the other hand, a macro statement simply assigns 
a value to a variable (#i =<some value or an arithmetic expression>), 
or jumps to a specified block number (GOTO_ and IF _GOTO_), or 
uses a conditional statement (IF_THEN_, WHILE_DO_, and END_), 
or calls a macro program. To put it simply, a macro statement does not 
directly cause physical machine movement, whereas an NC statement 
directly controls the machine movement. An NC statement may or 
may not use macro variables/functions. 

There are two major differences in the way the control treats NC 
statements and macro statements: 

• If the program is executed in the single-block mode (there is a 
switch for this purpose on the MOP), its execution stops at 
the end of each NC statement, and proceeds to the next block 
only after the CYCLE START button is pressed again. How­
ever, the execution does not stop at the end of a macro state­
ment, it proceeds to the next block. If it is desired to execute 
the macro statements also in single-block mode, set parame­
ter 6000#5 to 1. In a normal situation, such a requirement 
would never arise, because a macro statement does not 
involve machine movement. However, in case of an error 
in the program, execute the macro statements one at a time 
to check the intermediate calculations. 

• Although the program execution is block by block, the control 
prereads the next block and interprets it in advance, to speed 
up the execution. In the radius compensation mode, two 
blocks are preread, because the control needs to position the 
tool properly at the end of the current block, to suit the next 
path segment. However, all (or as many as possible) sequential 
macro statements are read and evaluated immediately. In 
fact, the control does not count a macro statement as a block. 
An NC statement constitutes a block. 

17 
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Coming back to the discussion on defining variables, note that a 
variable always stores a value with minimum three decimal places, 
if the total number of digits does not exceed eight. If less than three 
decimal places are used, zeroes are added. 

Examples: 
#1 123 4; 
#1 123 45; 
#1 123 45 6 ; 
#1 123 45 67; 
#1 123 45678; 

(Stores 01234.000) 
(Stores 12345.000) 
(Stores 123456.00) 
(Stores 1234567.0) 
(Stores 12345678) 

If more than eight digits are specified, the additional digits might 
be converted to 0, after rounding up to eight digits (irrespective of 
decimal position), which may give unexpected results, as explained 
in the following example: 

#1 1234 56 . 7 89; (Stores 123456.790 in variable #1) 

#2 123456. 7 94; (Stores 123456.790 in variable #2) 

#3 #2 - #1; (Stores 0.000 in variable #3) 

However, in the Fanuc Oi control, specifying more than eight dig­
its, for any value, generates an error message, "TOO MANY DIGITS," 
and terminates the program execution. It will not store values like 
123456.789 in a variable, and will display the error message. If, how­
ever, more than eight digits result after an arithmetic calculation, 
rounding is automatically done up to eight digits, and no error (alarm 
message) or warning (operator's message) appear. 

A variable can also be defined in a conditional manner (condi­
tional statements are explained in Sec. 5.3): 

#10 = 1 0 ; 

#25 = 5; 

IF [#1 0 GT #2 5] THEN #25 

2.4 Display of Variables 

#2 5 + 10; (TRUE condition, so 
#25 becomes 15.000) 

It is necessary to understand how the values of variables are displayed 
on the macro variable screen, because it might cause some confusion. 
The calculated value of a variable must lie within the permitted range 
(10-29 ~magnitude~ 1047

, or be 0) . However, all the legal values can­
not be displayed correctly on the screen, which uses a simple eight­
digit decimal format, without exponential digits. Even then, the value 
(provided it is legal) held in the variable is correctly used for further 
calculations. Also, Fanuc Oi series controls do not allow more than 
eight digits (including leading or trailing zeroes) for specifying a 
value in direct assignment. Some examples are given below: 

#1 = 0 . 00000001 ; (Illegal value, as it contains 
more than eight digits) 
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#1 . 00000001; (Assigns correct value to#1, but 
displays nine stars, *********, 
because the number cannot be 
correctly displayed using eight 
digits, because the display 
automatically adds at least one 
zero to the left of decimal. So, 
it should display 0.00000001, 
which it cannot because nine 
digits are required. Note that 
the value is the same as the 
value in the previous example) 

#1 #1 *10 ; (Assigns0.0000001to#1 which 
is also correctly displayed) 

#1 #1 * #1 * #1 * #1 1 10; (Assigns I0-29 to #1, but dis­
plays nine stars) 

#1 #1 I 10; (The calculated value is less 
than I0-29, which does not lie in 
the permitted range, so the 
execution terminates with an 
alarm. Note that the alarm mes­
sage would be "CALCULATED 
DATA OVERFLOW," though 
it is actually a mathematical 
underflow) 

#1 10000000; (Displays 10000000) 

#1 #1 * #1 * #1 * #1 * #1 * #1; (Assigns 1042 to #1, but dis­
plays nine stars) 

#1 #1 * 100000; (Assigns 1047 to #1, but dis­
plays nine stars) 

# 1 # 1 * 10; (The calculated value is more 
than 1047 which does not lie 
in the permitted range. So, 
the execution terminates with 
an alarm, "CALCULATED 
DATA OVERFLOW") 

2.5 Real versus Integer Values 
Though perhaps inappropriate, Fanuc control is very liberal in the 
use of real numbers in place of integer numbers, and vice versa, in 
macro statements (only). While integer numbers in place of real num­
bers do not cause any problem, real numbers (direct assignment or 
the value of an arithmetic expression) used in place of integer num­
bers are automatically rounded. This has already been explained with 
reference to designation numbers of variables. Here are some differ­
ent examples (once again, this is only a theoretical discussion, with 
the sole purpose of explaining the logic being followed by the control, 
as it might help in error diagnosis): 

#1 = 1000.4999; 
M03 8#1; (Equivalent to M03 S1000) 
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# 1 = 1000. 500 0 ; 

M03 S#l ; 

M0 3 S1 0 00 .0; 

# 1 = 3 .4 999999; 

M#1 S1000; 

#1 = 3 .5000000; 

M#1 S1000; 

M3 . 0 S1000; 

(Equivalent to M03 51001) 

(An illegal statement. 5-value must be an integer 
number) 

(Equivalent to M03 51000) 

(Equivalent to M04 51000) 

(An illegal statement. M-value must be an integer 
number) 

Although the last statement is illegal, if 3.0 (or some other real num­
ber or expression) is enclosed within square brackets, it becomes a 
macro expression, and rounding is done: 

M[3.0 ] S10 00; 

M[3 . 4 99999 9 ] S100 0 ; 

M[ 3 .5] S10 00 ; 

(Equivalent to M03 51000) 
(Equivalent to M03 51000) 

(Equivalent to M04 51000) 

This also applies to all other addresses (except G-eodes) such as spindle 
speed also: 

M03 S[ 1 000.0]; 

M03 S [1 00 0 . 4999]; 

M03 S [1 000 .50 00 ]; 

(Equivalent to M03 51000) 

(Equivalent to M03 51000) 
(Equivalent to M03 51001) 

All these square brackets can also contain arithmetic expressions. 
Note that if parameter 3451#2 (on a milling machine only; this param­
eter is not available on a lathe) is set to 1, the spindle speed can have 
up to one decimal point, though the interpreted speed would be the 
rounded integer value: 

S1000 . 5; (Equivalent to 51001, if parameter 3451#2 = 1) 

S1 000 . 50 ; (Illegal, because of more than one decimal place) 

Too much flexibility makes a programming language rather 
"undisciplined," and it becomes error-prone. An inadvertent mistake 
by the programmer might be interpreted "correctly" by the machine, 
leading to undesirable consequences. And this is very possible because 
macro programming may involve complex calculations and compli­
cated logic. In the author's opinion, a real value must not be accepted 
where an integer value is required. Moreover, as has been described 
in Sec. 2.6, Fanuc control (in fact, perhaps all controls) treats a null 
variable as a variable having 0 value in arithmetic calculations. This 
is again illogical and may prove to be dangerous. Typing mistakes are 
always possible. Perhaps the control manufacturers should modify 
their macro compilers to make it a PASCAL-like disciplined language. 
Presently, the programmer has to very meticulously understand the 
logic followed by the macro compilers. 
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The problem is more severe in the use of G-eodes. The control 
does not allow any macro expression as the number of a G-eode. So, 
a command such as G[Ol] is not equivalent to GOl, and is illegal. But, 
one must be aware that the control may not give an error message in 
all cases. For example, G[03] causes an unexpected tool movement at 
rapid traverse rate on Oi Mate TC control, which may cause an accident 
on the machine. So, as a rule of thumb, never use a macro expression 
as the number of a G-eode . 

G-eodes can, however, use macro variables as their numbers. 
These variables also can be defined in terms of an arithmetic expres­
sion. Though no practical application may ever need to use expres­
sions for defining these variables, one should be aware of even theo­
retical possibilities, which might be helpful in interpreting the 
outcome of certain mistakes in the program: 

#1 = 0; 

#2 = 1; 

I F [#2 GT #1 ] THEN #3 

#4 

G#1; 

G#2; 

G#3; 

G#4; 

[#2 + #3] I 2; 

(Stores 0.000 in #1) 

(Stores 1.000 in #2) 

9 9 ; (TRUE condition, so #3 becomes 
99.000) 

(Calculation makes #4 equal to 
50.000) 

(Equivalent to GOO) 

(Equivalent to GOl) 
(Equivalent to G99) 

(Equivalent to GSO) 

Except a few (e.g., Gl2.1 and Gl3.1), all G-eode numbers are inte­
gers. So, the values of the variables (directly assigned or assigned through 
an expression), to be used as G-eode numbers, must be integers. Fanuc 
control accepts real numbers also, as long as its rounded form, up to the 
first place after the decimal point, contains 0 after the decimal point. In 
other words, it allows an "error" of ±0.05. So, a number in the range 1.95 
:o; n :o; 2.0499999 would be taken as 2 (as the rounded form, up to the first 
place after decimal, is 2.0); in 2.95 :o; n :o; 3.0499999 range, it would be 
taken as 3, whereas 2.05 :o; n :o; 2.9499999 is an illegal range (as the range 
is 2.1 :o; n :o; 2.9, in the rounded form) . So, 1.95, 2.0, 2.0499999, etc. are all 
taken as 2, while 1.9499999,2.05, 2.5, 2.9499999, etc. would be illegal: 

#1 

#2 

#3 

#4 

#5 

G#l; 

G#2; 

G#3; 

G#4; 

G#5; 

1.9499999; 

1. 95; 

2 0 0; 

2 . 0499999; 

2.05; 

(Illegal) 

(Equivalent to G02) 
(Equivalent to G02) 

(Equivalent to G02) 

(Illegal) 
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The purpose of explaining the effect of specifying a real number, 
in place of an integer, is to fully describe the logic used by typical 
controls. Logically, a situation where the result of calculation (or 
direct assignment) comes out to be a real number (with nonzero dig­
its after the decimal point), where an integer is expected (such as the 
values associated with G-, M- and S-codes), would never arise unless 
there is some mistake in the program. However, for a quick diagnosis, 
it is necessary to fully understand the logic built in the macro com­
piler. Even if the program is perfect, typing mistakes can always 
creep in. 

Recall that parameter 3401#0 decides whether a dimensional 
value (such as distance and feedrate) expressed as a number without 
a decimal point would be interpreted as a millimeter value or a micron 
value (assuming G21 mode). This may cause a serious problem on 
some controls, other than Fanuc, if an integer number is used in place 
of a real number, while defining a variable. For example, 

#1 = 10; 

GOO W#1; 

may cause a displacement of 0.01 mm. So, to be on the safer side, 
always use decimal points for all dimensional values. This problem, 
however, does not exist on Fanuc control which would store 00010.000 
in variable #1, irrespective of parameter setting. 

Variables can be used as the values following any letter address 
except 0 (program number) and N (sequence number). / (optional 
block skip number) also does not allow use of variables: 

#1 = 1; 

0#1; 

N#1 G01 X100; 

/ #1 G01 X100; 

(An illegal statement. Use 01) 

(An illegal statement. Use N1) 

(An illegal statement. Use / 1) 

2.6 Undefined Variables 
If a value is not explicitly assigned to a variable, it remains undefined, 
and does not contain anything. Such a variable is called a null variable 
or a vacant variable. #0 is a predefined, read-only-type null variable. 
No data can be stored in it. It has been provided for the sole purpose 
of logical comparison of some other variable with it, to find out whether 
or not the variable is defined. Comparison statements are used in 
conditional expressions, which are explained in more detail in Sees. 4.1 
and5.2. 

Null Variables in Word Addresses 
When a null variable appears in an address, that particular address 
(only) is ignored. For example, if #1 is a null variable, then GOO X#1 
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will not cause any movement, though GOO will become the active 
modal code of Group 1. This statement is equivalent to a sole GOO 
command, without any axis word. On the other hand, GOO X#l ZlOO 
is equivalent to GOO ZlOO. 

Null Variables in Arithmetic Operations 
Usually, if a null variable is used somewhere, for a purpose other than 
a comparison to find out whether or not it is a null variable, an error 
message, UNDEFINED VARIABLE, would have been more appro­
priate. But, the Fanuc macro compiler (and possibly compilers of other 
manufacturers also) is not designed this way. In arithmetic operations 
such as addition and multiplication, as well as in function evaluation, 
a null variable is treated as a variable having 0 value. In the following 
examples, all variables are assumed to be null variables, initially: 

#2 = #1; 

#3 [#1J ; 

#4 #1 + #1; 

#5 #1 * 5; 

#6 1 I #1; 

#7 SQRT[#1J; 

#8 #4109; 

(#2 remains a null variable because there is no arith­
metic operation or function evaluation in this state­
ment) 

(Presence of brackets does make it an expression, but 
absence of any arithmetic operation with #1 keeps it 
null. So, #3 remains a null variable) 
(Equivalent to #4 = 0 + 0. So, #4 gets defined and 
stores 0) 

(Equivalent to #5 = 0 * 5. So, #5 gets defined and 
stores 0) 

(Equivalent to #6 = 1 I 0, which will give "DIVIDED 
BY ZERO" error) 

(Equivalent to #7 = SQRT[O]. So, #7 gets defined and 
stores 0) 

(Variable #4109 contains the currently active feedrate 
on the machine, and if no F-word has been used any­
where in the preceding program blocks, it contains 0. 
Hence, #8 would store either the current feedrate or 0. 
#4109-type variables are described in Chap. 3. These 
variables are never null, even if not explicitly defined) 

Null Variables in Conditional Expressions 
Except for EQ (equal to) and NE (not equal to), a null variable is the 
same as 0. In the following statements, #1 is a null variable: 

[#1 LT OJ (Equivalent to 0 LT 0, hence FALSE) 
[#1 LE OJ (Equivalent to 0 LE 0, hence TRUE) 
[#1 GT OJ (Equivalent to 0 GT 0, hence FALSE) 
[#1 GE OJ (Equivalent to 0 GE 0, hence TRUE) 
[#1 LT #OJ (Equivalent to 0 LT 0, hence FALSE) 
[#1 LE #OJ (Equivalent to 0 LE 0, hence TRUE) 
[#1 GT #OJ (Equivalent to 0 GT 0, hence FALSE) 
[#1 GE #OJ (Equivalent to 0 GE 0, hence TRUE) 
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However, a null variable is not the same as 0 in comparison state­
ments using EQ and NE: 

[ #1 EQ 0] (With EQ, a null variable is not the same as 0, hence FALSE) 

[ # 1 NE 0] (With NE, a null variable is not the same as 0, hence TRUE) 

[ # 1 EQ # 0] (Both are null variables, hence TRUE) 

[ # 1 NE # 0] (Both are null variables, hence FALSE) 

2. 7 A Simple Use of Macro Programming Features 
Finally, the following simple example shows how the use of variables 
makes the same program work under different requirements: 

#1 = 0; 

#10 = 1; 

#100 50; 

#101 = 60 ; 

#102 = 30; 

G#10 X#100 Z#101 R#1 F#102; 

These statements are equivalent to GOl XSO.OOO Z60.000 RO.OOO 
F30.000, which can be made to do different things simply by chang­
ing the values stored in the different variables. There can be several 
such statements in the program. There is no need to modify any of 
them. Just define the variables at the beginning of the program, and 
change them as per requirement. This is the simplest most, yet effec­
tive use of macro programming, which does not require an in-depth 
knowledge of this programming language. One need only be aware of 
the types of macro variables and their permissible ranges. 

2.8 Retaining Programs in MDI Mode 
All the statements made above and in the subsequent chapters have 
actually been verified on Fanuc Oi Mate TC wherever applicable. If 
one wishes to verify them, or wants to try some other combinations, 
this can be safely done using the dynamic graphic feature in AUTO 
mode (automatic operation mode, which is also called memory mode). If, 
however, no tool movement is involved, verification can be done 
without using dynamic graphic, in memory mode. In fact, even MDI 
mode can be used. But the default setting for the MDI mode is such 
that the program is erased automatically after its execution is com­
plete. This means that the program would have to be typed again, for 
a subsequent execution. This makes trial and error impractical in 
MDI mode. However, if parameter 3204#6 is set to 1, the MDI pro­
gram is retained even after its execution is over. The RESET key will, 
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of course, erase it. If it is desired to retain it even after pressing RESET 
key, set parameter 3203#7 to 0. On other versions of Fanuc control, 
these parameter numbers might be different. Reference to respective 
parameter manuals would be required. An MDI program, however, 
cannot be permanently saved with a program number for future use. 
Switching off the machine erases it permanently. 
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CHAPTER 3 
Types of Variables 

3.1 Local and Global Variables 
In a high-level computer language, there are concepts of local variables 
and global variables . Local variables are defined inside a subroutine, 
and are local to them. They are used for intermediate calculations in 
the subroutine and have no significance outside it or in another sub­
routine nested to it. So, even if different subroutines use local vari­
ables with the same names, these refer to different and independent 
memory locations, and hence do not affect one another. And, in the 
case of nesting, after the execution of the nested subroutine is over 
and the execution goes back to the calling subroutine, the previously 
defined local variables of the calling subroutine again become avail­
able to it, with the same previously stored values. The main p ro­
gram also can have its own set of local variables. Global variables, on 
the other hand, are global in nature in the whole program. They can 
be used anywhere with the same meaning since these refer to the 
same memory locations: 

Main program 

GLOVAR = 1 

Call subroutine 1 

Print GLOVAR 

End 

Subroutine 1 

Local variables: LOCVAR 

LOCVAR = 1 

GLOVAR = GLOVAR + 1 

Call Subroutine 2 

Print LOCVAR 

Return 

(Prints 3, because the global vari­
able, GLOVAR, gets modified by 
both the subroutines) 

(Prints 1, not 10, because the local 
variables LOCVAR of the two 
subroutines are stored at differ­
ent and independent memory 
locations) 

11 
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Subrout i ne 2 

Local variables : LOCVAR 

LOCVAR = 10 

GLOVAR GLOVAR + 1 

Return 

(LOCVAR defined here is differ­
ent from LOCVAR defined in 
Subroutine 1) 

Subprograms and macros are used as subroutines in a CNC pro­
gram. The discussion about local variables applies to macros only. A 
subprogram does not have its own set of local variables. It uses the vari­
ables of the calling program, with the same meaning. And, if a 
subprogram defines some new variables, these become available to the 
calling program also, when the execution returns to it. In fact, a subpro­
gram can be considered to be a part of the calling program only, which 
is defined separately to avoid multiple typing of repetitive lines. 

In macro programming terminology, local variables are referred to 
as local variables only, but the global variables are referred to as common 
variables. Further, common variables of a special type are available, 
which retain the values stored in them even after the machine is switched 
off. The values stored in these variables remain available in all the 
future machining sessions and can be used/ modified by all the pro­
grams. These can be cleared (made null) or modified only intentionally. 
Such variables are called permanent common variables. These variables 
are one of the unique features of macro programming, and are not avail­
able in conventional programming languages such as PASCAL. 

There is one more type of variable that is used to read / write a 
variety of control data, indicating machine status, such as current tool 
position and tool offset values. These are called system variables, some 
of which are read-only type. System variables are described in detail 
in Sec. 3.5. 

Thus, macro variables are of the following types: 

• Predefined, read-only null variable (#0) 

• Local variables (#1 to #33) 

• Common variables (#100 to #199) 

• Permanent common variables (#500 to #999) 

• System variables (#1000 and above) 

Variables #34 to #99 and #200 to #499 are not available and cannot 
be used. 

3.2 Effect of System Reset on Macro Variables 
Whenever M02 or M30 is executed, or the RESET button on the MDI 
panel is pressed, all local variables (i.e., #1 to #33) and common variables 
(i.e., #100 to #199) are cleared to null. This means that a common variable, 
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with the same meaning, can only be used in one program (and in the 
subprograms/macros nested to it). So, if a calculated value in one pro­
gram is needed to be used by other program(s) also, it has to be stored in 
a permanent common variable (i.e., #500 to #999). 

A permanent common variable always has the same meaning for 
all the programs, not only in the current machining session, but also in 
all future sessions, until it is modified to store a new value. And, it can 
be modified anytime by any program. It can also be modified in the 
MDI mode. It is not cleared by the M02/M30/RESET button. 

Although not recommended (in the interest of a safe program­
ming practice, as most of the people believe that the local variables 
and the common variables in a new program start with null values), 
the following parameter setting would retain the values stored in 
local and common variables, even after system reset (though power 
OFF will still clear them): 

Parameter 6001#6 = 1 (Retains common variables even after system 
reset) 

Parameter 6001# 7 = 1 (Retains local variables even after system 
reset) 

The default setting for these parameter bits is 0, which clears the 
stored values, if any, whenever the system is reset. It is, however, 
good programming practice not to depend on defaults and set all the 
local and common variables to null before using them in a program. 
And, the permanent common variables also should be carefully used 
because they may contain some previously stored values. 

3.3 Levels of Local Variables 
A macro always starts with null values for all the local variables, 
except those whose values are passed on to the macro through the 
arguments of the macro call. The method of passing desired values to 
certain local variables is discussed in detail in Chap. 7. At this stage, 
it is sufficient to know that G65 P2 AS is a macro call for program 
number 2, with macro variable #1 = 5 (initially), and the other local 
variables of the macro remaining null. 

The local variables, defined in a macro, remain accordingly 
defined only in the current call of the macro. Any subsequent call of 
the same macro will again start with null values for all the local vari­
ables (except, of course, those defined through the argument list): 

Main program 

00001; 

G65 P2 AS; 

(Program number 1) 

(The macro execution starts with #1 = 5, and sets 
#10 = 5. Then, it redefines #1 and stores 6 in it. 
Other local variables of the macro remain null. 
Once the execution of the macro is complete, the 
values assigned to #1 and #10 are lost) 

www.EngineeringBooksPdf.com



30 Ch apter Thre e 

G65 P2 A5; 

M30; 

Macro 

00002; 

#10 = #10 + #1; 

#1 = #1 + 1 · 

M99; 

(This macro call does not get affected by the previ­
ous call in any manner. The execution of the macro 
starts with #1 = 5 and null values for the remaining 
local variables, as in the previous call. So, the macro 
sets #10 = 5 and #1 = 6, as in the previous call) 
(End of the main program) 

(Program number 2) 

(Recall that a null variable is equivalent to 0, in 
arithmetic operations) 

(Redefines #1) 

(Return to the calling program) 

Nesting of macros up to a maximum of four levels is allowed. 
This means that the main program may call macro 1, macro 1 may call 
macro 2, macro 2 may call macro 3, and macro 3 may call macro 4. If 
a local variable with the same designation is being used everywhere, 
it will have five different meanings, corresponding to the main pro­
gram and the four macros. When a macro calls another macro, a new 
set of local variables becomes active. However, the values stored in 
the local variables of the calling macro are not lost. After M99, when 
the control returns to the calling macro, the previously stored values 
become available. For example, let us assume that the main program 
and the four nested macros set a local variable #10 equal to 1, 2, 3, 4, 
and 5, respectively. Then, when the control returns to, say, macro 2 
(after executing M99 of macro 3), the value of #10 would be restored 
to 3. Note that the values of the local variables of a macro are retained 
only in case of nesting, not in a subsequent call of the macro, as 
already discussed. 

The five different sets of the local variables in nested macros are 
referred to as five levels (which are actually five different memory 
locations) of local variables. The level of the main program is defined 
as level 0, and the levels of the subsequent nested macros are incre­
mented by 1: 

Main program: #1 to #33 of level 0 

Macro 1 (called by main program): #1 to #33 of level 1 

Macro 2 (called by macro 1): #1 to #33 of level 2 

Macro 3 (called by macro 2): #1 to #33 of level 3 

Macro 4 (called by macro 3): #1 to #33 of level4 

Note that the main program can call both macros and subprograms, 
and, macros and subprograms can also call each other. Since subprograms 
also allow a nesting of up to four levels, we can have a mixed nesting of 
up to eight levels-four for macros and four for subprograms-in any 
order: main program calling macro 1, macro 1 calling macro 2, macro 2 
calling macro 3, macro 3 calling macro 4, macro 4 calling subprogram 1, 
subprogram 1 calling subprogram 2, subprogram 2 calling subprogram 3, 
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and subprogram 3 calling subprogram 4. Several other combinations 
of the four macros and the four subprograms are also possible, such as 
main program calling macro 1, macro 1 calling subprogram 1, subpro­
gram 1 calling macro 2, macro 2 calling subprogram 2, subprogram 2 
calling macro 3, macro 3 calling subprogram 3, subprogram 3 calling 
macro 4, and macro 4 calling subprogram 4. There is no restriction on 
the total number of macros or subprograms in a program; only the 
maximum level of nesting has to be four or less, separately for macros 
and subprograms. In other words, in case of a mixed nesting, not more 
than four macros or four subprograms are allowed. However, there is 
no restriction on the total number of nested calls at different places in 
the same program, as long as the maximum permissible level of nest­
ing is not exceeded at each place. 

It should, however, be noted that subprograms do not have their 
own set of local variables. A subprogram uses the local variables as 
defined by the calling program (which can be the main program, a 
macro or another subprogram), and can also modify those variables. 
For example, let us assume that the main program calls a macro, and 
the macro calls a subprogram. If the same local variable #10 (say) is 
being used everywhere, then #10 of the main program and #10 of the 
macro will have different meanings (corresponding to level 0 and 
level 1, respectively), but #10 of the macro will be the same as #10 of 
the subprogram. If the subprogram modifies #10, it will also over­
write #10 of the macro, because both refer to the same memory loca­
tion (corresponding to level1). 

These concepts are further explained through examples of Figs. 3.1 
and 3.2, depicting the maximum possible level of nesting. Refer to 
Chaps. 6 and 7 for the methods of calling subprograms and macros. 
For these examples, it is sufficient to know the following: 

G65 P2 A3; 

M98 P2; 

M99; 

(Calls program number 2 as a macro, and sets for the 
macro, #1 = 3, with the other local variables remaining 
null, initially) 

(Calls program number 2 as a subprogram. The calling 
program and program number 2, both use the same set of 
local variables) 

(Returns execution to the calling program) 

Note that a subprogram is no different from a macro, structure­
wise. Both (as well as the main program) can use all types of macro 
variables and macro functions . If a program is called by G65, it 
becomes a macro, and the rules regarding local variables are fol­
lowed. The same program, if called by M98, becomes a subprogram. 
However, usually a program is designed to be used either as a macro 
or as a subprogram (or as the main program). If it is a macro, then 
certain local variables will be assigned some values through the argu­
ment list in the macro call statement; other local variables will remain 
null. It is also possible not to assign any initial value to any local variable, 
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r----------------------------, r----, 
11 Main program I 
1
1 

(level 0) I r - - - - 1 

II oooo1; I I Fourth macro I 
I (level4) I 

11 #1 = 1; 1 
I G65 P2 A2; I 00005; I 
I #100=#1 ; #104=#1; I 
I M30; I I M99; I 
1 Local I Local Local I Local Local I 
1 variables of 1 1 variables of 1 variables of 1 variables of variables of I 
I main program I 1 first macro 1second macro1 third macro 1 fourth macro 1 
I (level 0) I I (leve11) I (leve12) I (level 3) 1 (leve14) 1 

I I I I I I I 
I #1 I I #1 I #1 I I #1 I 
I I I I I I I 
I I I I I I I 
I I I I I I I 
I I I I I I I 

: : :#33 NULL : 
L ____ _j L____ L ____ _j L ____ _j L ____ _jl 

Common variables: I 
#1 00 = 1, #1 01 = 2, #1 02 = 3, #1 03 = 4, #1 04 = 5, #1 05 onward not defined, hence NULL I 
L------ ---------------------- _j 
FIGURE 3.1 Local variables in nested macros. 

while calling a macro (e.g., G65 P2 which simply calls program num­
ber 2, as a macro, with null values for all the local variables). On the 
other hand, a subprogram call is just like a copy-and-paste operation of 
the called program into the calling program. It does not change the 
level of the local variables of the calling program. So, it can modify 
the stored value in any variable of the calling program and can also 
define new variables, during the course of its execution. At the end of 
its execution, the final values stored in all the variables are passed on 
to the calling program. 

The control stores all the programs in the same manner. It is the 
specific use of a program that classifies it as the main program or a 
subprogram or a macro. Figure 3.3 gives an example of mixed nest­
ing of a macro and a subprogram. A maximum of three more macros 
and three more subprograms can be nested to this program. In this 
program, the main program and the subprogram both refer to the 
same set of local variables of level 0, whereas the local variables in 
the macro are level-1 variables. Recall that an undefined (i.e., unas­
signed) variable is a null variable, which is equivalent to 0 in all 
arithmetic operations. 
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r-----r~~==~r====~r====~------, 
I r - - - - -, 1 First 1 1 Second 1 1 Third 1 
11 Main program 1 I subprogram I I subprogram I I subprogram I r - ;;;;-u-;; - -, 

I oooo1 : I 1 oooo2: 1 1 oooo3; 1 1 oooo4; 1 
1 111 = 1; I 111 = 2; I 111 = 3; I 111 = 4; I 
1 #100=#1; 11101 =#1 ; #102=#1 ; #103=#1 ; 

M98 P2; I M98 P3; I M98 P4; I M98 P5; 
I 111 1 o = 111 : 1 111 11 = 111 : I 11112 = 111: 1 #113 = 111: 
I M30; M99; M99; M99; 
I L---~ 

I Local 
I variables of 
I main program 
1 (level 0) 

I 
I 
I 
I 
I 
I 
I 

Before 
calling 
00002 

After 
returning 

from 
00002 IL ____ ...J 

I 
I 
I 

Local 
variables in 

first 
subprogram 

(level 0) 

Before 
calling 
00003 

After 
returning 

from 
00003 L ____ ...J 

Common variables: 

Local 
variables in 

second 
subprogram 

(level 0) 

#1 

Before 
calling 
00004 

After 
returning 

from 
00004 L ___ _ 

Local 
variables in 

third 
subprogram 

(level 0) 

#1 

#1 

Before 
calling 
00005 

After 
returning 

from 
00005 L ___ _ 

#100 = 1' #101 = 2, #102 = 3, #103 = 4, #104 = 5 
#110 = 5, #111 = 5, #112 = 5, #113 = 5 
#1 05 to #1 09, and #114 onward not defined, hence NULL 

subprogram 

00005; 
#1 = 5; 
#104 = #1; 
M99; 

Local 
variables in 

fourth 
subprogram 

(level 0) 

#1 

L ___ _ ...J 

L----------------------------
FtGURE 3.2 Local variables in nested subprograms. 

3.4 Range of Values Stored in Variables 
Local and common variables can have a value 0 or a value in the fol­
lowing ranges: 

-1047 to -10-29 

+ 10-29 to+ 1047 
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r------------, 
Subprogram 1 

00001; 
#1 = 1; 
M98 P2; 
#3 = #3 + 1; 
M30; 

00002; 
#2 = 2; 
G65 P3 A3; 
#3 = #3 + 1; 
M99; 

Local variables of 
main program and subprogram 

(level 0, for both) 

#1 

Before 
calling 
00002 

l#33 NULL 

#1 

Before 
calling 
00003 

1
1 

Final values Before 
before returning to 

I program end 00001 

I 
I 
I 

L ___________ ...J 

r-----, 
1 Macro 1 

I oooo3; I 
#2 = #2 + 4; I 
#3 = s; I 
M99; I 

I 
'------'1 

I Local variablesl 
I of macro I 
I (level1) I 
I I 
I #1 I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
1#33 NULL 1 

I Before I 
I returning to 1

1 I oooo2 L ____ ...J 

FIGURE 3.3 Local variable in mixed nesting of macros and subprograms. 

If, as a result of calculations, an arithmetic value (final or interme­
diate) goes beyond this range, an error condition (which is referred 
to as an alarm) is generated and the execution stops. In fact, a value 
lying between -10-29 and+ 10-29 (but not equal to 0) also is not permit­
ted. The associated alarm message is "CALCULATED DATA OVER­
FLOW" (though this is actually a case of mathematical underflow). 
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A programmer may desire that the control should ignore this "error," 
and treat any value in this range as 0. This, however, is not possible, 
as there is no parameter to control this feature . But, this is only a 
theoretical possibility. It is unlikely that such a situation would ever 
arise in CNC-related calculations. An example of the theoretical pos­
sibility is given below. 

#1 . 00000001; (Assigns 10-a to variable #1) 

#2 #1 * #1 * #1 * #1; (Thecalculatedvalueisl0-32 whichgen­
erates an alarm, as the value is smaller 
than 10-29) 

If such a situation is ever likely to occur, the programmer should 
normalize the "suspected" variable to 0, whenever its absolute value 
becomes smaller than, say, lQ-10• This will not have any adverse effect 
on the accuracy of further caiculations because macro calculations are 
accurate up to only about eight decimal digits. A conditional state­
ment such as the following can be used: 

IF [ABS[#1] LT [0 . 00001 * 0 . 00001]] THEN #1 = 0; 

Note that all the values lying in the permissible range cannot be 
displayed on the screen, which uses eight-digit decimal format. So, 
the minimum non-zero value (magnitude) that can be displayed is 
0.0000001, and the maximum value is 99999999. The control displays 
nine stars(*********) as the value of a variable (on the macro variable 
screen) whenever its display is not possible, provided the value lies in 
the permissible range (magnitude lying between lQ-29 and 1047

). 

3.5 System Variables 
The term "system" refers to "CNC control." So, system variables can 
also be called control variables. This is the last group of variables that 
are related to the current status of the CNC control. 

System Variables versus System Parameters 
System variables should not be confused with system parameters (which 
are commonly referred to as just parameters) . Parameters decide the 
default settings of the control. For example, as already discussed, 
the value of a certain parameter decides whether the bracket key on 
the MDI panel will give a parenthesis or a square bracket. A parameter 
is not a variable. We select a value for parameter to suit our require­
ment, and do not change it unless our requirement changes. On a 
new machine, all the parameters are factory-set, keeping in mind the 
most common applications. Normally, users do not need to change 
parameters. ln fact, they should not, unless it is absolutely essential 
and the user clearly understands the effect of the change because an 
incorrect parameter setting may cause unexpected machine behavior, 
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leading to accidents. The users should, in fact, keep the back-up of the 
original parameters in a safe place so that they could be reinstalled if 
ever needed in future. Fanuc Oi series controls come with a flash 
memory card and a PCMCIA slot for it, for backup purposes. 

System variables, on the other hand, actually vary, as one works 
on the machine. Since the values stored in them keep changing, they 
are called variables, but they cannot be used the way local and com­
mon variables are used. The sole purpose of system variables is to 
exchange information with the control regarding its current status. 
Thus, system variables allow us to communicate with the control, 
which is essential for general-purpose program development and 
automation. Such 'applications, which are the main purpose of macro 
programming, are discussed in more detail in subsequent chapters. 

The only similarity between system variables and system param­
eters is that both are four-digit numbers (some of these are five-digit 
numbers also). 

System Variables on Fanuc Oi Series Controls 
There are hundreds of system variables, and it is unlikely that a user 
will ever use all of them. He should, however, be well aware of the 
available information through these variables, without which he can­
not fully utilize the capability of his machine. Like system parameters, 
several of the system variables differ on different control versions of 
the same company, even for the same functions. The remaining part of 
this chapter describes some of the commonly used system variables 
on Fanuc Oi series controls. On a different control, one would need to 
refer to its Operator 's Manual. The basic things would be same, only 
the variable numbers might differ. 

Displaying System Variables 
Although system variables can be read and written (though some are 
read-only type) in a program, they are not displayed on the macro 
variable screen. Only the values stored in local and common variables 
can be seen on the screen. So, if one really wants to see the value stored 
in a particular system variable, an indirect approach will have to be 
used: copy the system variable into a local or a common variable, 
which can then be seen on the offset/setting (OFS/ SET) screen. 

The information given below is to be used as reference only. There 
is no need to read everything here, at this stage. So, skip to the next 
chapter, after giving a cursory look at this information. System 
variables can be broadly categorized on the basis of their use for the 
following purposes: 

• Interface signals 

• Geometry and wear offset values 

• Workpiece coordinate system shift amount 

• Macro alarm (execution stop) 
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• Time information 

• Automatic operation control 

• Execution pause (which can be restarted with CYCLE START) 

• Mirror image information 

• Number of machined parts 

• Modal information 

• Current tool position 

• Work offset values 

Interface Signals 
This is perhaps the toughest concept in macro programming, because 
it also requires a knowledge of PLC programming. It is only for 
advanced users. So, the readers may skip it until they have learned the 
basic features of macro programming. 

Interface signals are used for communicating with (i.e., receiving 
input and sending output, as binary signals, from / to) external 
devices, connected to the CNC machine. This issue is discussed in 
more detail in Chap. 12. Here, only a broad overview is given, with­
out going into the finer details, so, certain things may not be very 
clear until the reader refers to the chapter exclusively devoted to this 
topic. The main objective here is to explain what interface signals are, 
not how they are used, though some idea of that is also given. 

A discussion on interface signals and their use requires an under­
standing of the hardware architecture of the control (refer also to 
Communication with external devices in Sec. 1.2 where some informa­
tion is given). The CNC (control) is mainly concerned with toolpath 
control. The overall control of the machine is through the logic incor­
porated in a PLC. For example, if the door is open, machining should 
not start. If, for some reason, machining is required to be done with 
the door open, the PLC logic will have to be altered, through a change 
in its ladder diagram. (Ladder diagram or ladder language is one of 
the methods of programming a PLC. It is assumed that the reader pos­
sesses its basic knowledge. If not, one may refer to some book on PLC 
programming, such as the one by John R. Hackworth, published by 
Pearson Education.) 

Though a PLC is an integral part of the control hardware supplied 
by the control manufacturers, it is programmed by the machine tool 
builders to suit particular machine tools. Fanuc calls its PLC program­
mable machine control (PMC). Essentially, both PLC and PMC refer to 
the same thing. 

When a CNC machine is connected to external devices, two-way 
communication between the CNC, the PMC, and the external devices 
is needed. The CNC, however, does not communicate with the external 
devices directly. The communication between the two is through the 
PMC, as shown in Fig. 3.4. 
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G-signal X-signal 

Machine tool 
CNC PMC and 

external devices 

F-signal Y-signal 

FIGURE 3.4 Communication between CNC, PMC, and external devices. 

The PMC accepts inputs from the CNC as well as from external 
devices (including the machine tool). These inputs are called F-signals 
and X-signals, respectively. Similarly, it sends outputs to the CNC 
(G-signals) as well as to the external devices (Y-signals). The X­
and Y-signals are also called DI (data in) and DO (data out) signals, 
respectively. 

Since F- and G-signals are internal to the control, the signal 
addressees and the corresponding meanings are decided by Fanuc. 
On the other hand, X- andY-signals are external signals, so the signal 
addresses and their meanings are decided by the MTB. The MTB does 
not need to use all the available X- and Y-addresses. The left-over 
addresses can be used by the end-user, as interface signals to /from 
external devices. Some X-addresses (such as X4.0 to X4.7, and X8.4), 
however, are standard, and always used with the same meaning. 

All the signals are eight-bit signals, each bit carrying a different 
meaning from the other seven bits. For example, the PMC sends the 
"cycle start" signal to the CNC by G7.2 (which means bit #2 of G7 or 
G007; usually, the F- and G-signal addresses are three-digit numbers, 
and X- and Y-addresses are two-digit numbers, where the leading 
zeroes can be omitted). On the other hand, G7.1 is the "start lock" 
signal (which disables the CYCLE START button on the MOP), and 
G7.0 is not defined. Similarly, XO.O (bit #0 of XO) and X0.1 (bit #1 of XO) 
are two independent input signals. Sometimes, a combination of cer­
tain bits is used for sending appropriate signals. For example, G43.0, 
G43.1, and G43.2 are for mode selection signal to the CNC. When 
these are all 0, the CNC considers it an instruction to work in the 
MDI mode. On the other hand, 001 is for HANDLE mode, 100 is for 
MEMORY or AUTO mode, and so on. 

The hardware connections for F- and G-signals are internal. The 
predefined meanings ofF- and G-signals cannot be changed by the MTB 
or the end-user. The address numbers for these signals and the associ­
ated meanings can be found in the Fanuc Maintenance Manual. 

A number of X- andY-signals are available for interacting with 
the outside world. Typically, XO to X3 are for general-purpose signals, 
X4 to Xll are connected to the keys of the Fanuc-manufactured MOP, 
X12 is connected to the manual pulse generator (MPG), X13 and X14 are 
for additional MPGs, and X15 is for error signals. Many MTBs do not 
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use Fanuc's MOP. They design their own MOP. In such cases, XO to 
X11 become general-purpose signals, and any signal can be used for 
any purpose. The available Y-signals typically are YO to Y7. One will 
have to refer to the manual supplied by the MTB to find out which 
X- andY-addresses have been used by them. The remaining addresses 
can be used by the users for the purpose of communication with 
external devices. 

The physical connection between the PMC and the external 
devices is done by connecting wires to the terminal strip attached to the 
I/0 (input/ output) module (also called the I/0 unit) of the PMC. 
Refer to the Connection Manual (Hardware) of Fanuc to know the pin 
assignment (i.e., which terminal corresponds to which X- or Y-address) 
on the terminal strip. The I/0 module is generally placed in the wir­
ing cabinet designed by the MTB. It is connected to the terminal strip 
by four 50-pin connectors (on the 1/0 module) a:nd ribbon cables. 

In order to communicate an external signal to the CNC, the corre­
sponding X-signal will need to be written to the appropriate G-signal 
(G54.0 to G54.7 and G55.0 to G55.7 are reserved for this purpose). This 
can be done by adding a new rung to the PMC ladder: 

G_·_ 
}-----j 

X_·_ 
f------11------------{ 

This defines a system variable (corresponding to the specified G­
address), which can be read in a program. For example, when XO.O 
(assuming the MTB has not used this address) is written to G54.0 
(which corresponds to variable #1000), it defines variable #1000 
(which becomes 0 or 1 depending on whether XO.O is low or high). 
Variable #1000 can be read in a program. Thus, the ON/OFF state of 
an external sensor becomes available inside the program. 

Similarly, the F-signals (those which are used for the purpose of 
external communication, F54.0 to F54.7 and F55.0 to F55.7) generated 
by the CNC become available to the outside world only when these 
are passed on as theY-signals by adding new rungs to the PMC lad­
der (then these signals can be tapped from the specified pins on the 
terminal strip and sent to external devices through wires): 

F_·_ 
f------ir------------; 

y_._ 
}-----j 

For example, if F54.0 (which corresponds to variable #1100) is written 
to YO.O (assuming the MTB has not used YO.O), the assigned value 
(0 or 1) to variable #1100, inside the program, becomes available at the 
output terminal YO.O, which can be used to switch an external device 
on or off. Thus, a program statement can drive an external device. 

The binary signals (corresponding to variables #1000, etc.) for 
such a communication are called interface signals. Typically, 16 input 
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and 16 output signals are available. The current status of these signals 
is available inside a program through certain system variables, as 
already explained by some examples. 

Two types of system variables are available: for 16 single-bit sig­
nals and for one 16-bit signal (for both input and output signals). The 
examples given pertain to system variables for single-bit signals 
which can only be 0 or 1. The variables for 16-bit signals are used to 
read / write all the 16 signals simultaneously by a single program 
statement. For example, if the first and the second signals (i.e., F54.0 
and F54.1) are 1 and the rest are 0 then the corresponding 16-bit sig­
nal would be 0000000000000011 (the decimal interpretation of which 
is 3). So, #1100 = 1; and #1101 = 1; is the same as #1132 = 3; except that 
the two outputs are triggered simultaneously in the second case. It is 
a matter of individual choice / requirement whether the signals are 
read/written by the program one by one or simultaneously. The com­
plete variable list is given below. (32-bit signals are also available. 
They are not described here because they are rarely used.) 

System Variables for Input Interface Signals 
# 100 0 to #1015 , #1032: #1000 to #1015 are single-bit signals. #1032 

is a 16-bit signal, whose individual bits 
(starting from the right) correspond to #1000 
to #1015. These are read-only variables. 

System Variables for Output Interface Signals 
#1100 to #1115 , #11 32 : #1100 to #1115 are single bit signals. #1132 

is a 16-bit signal whose individual bits 
(starting from the right) correspond to#1100 
to #1115. These are read / write variables. 

The decimal values of #1032 and #1132 (all other variables are 
either 0 or 1) would be given by the following equations: 

15 

#1032= L, #[1000+i] x 2i 
i=O 

15 

#1132= L, #[1100+i] x 2i 
i=O 

where the individual terms on the right-hand side would be either 0 
or 2i, depending on whether the corresponding signal is 0 or 1. 

The correspondence between these variables and the F- and G­
signals is given in Table 3.1. 

Geometry and Wear Offset Values 
The specified geometry and wear offset values are stored in certain 
system variables. These variables are described below for recent 
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G54.0 #1000 G55.0 #1008 F54.0 #1100 F55.0 #1108 

G54.1 #1001 G55.1 #1009 F54.1 #1101 F55 .1 #1109 

G54.2 #1002 G55.2 #1010 F54.2 #1102 F55.2 #1110 

G54.3 #1003 G55.3 #1011 F54.3 #1103 F55.3 #1111 

G54.4 #1004 G55.4 #1012 F54.4 I #1104 F55.4 #1112 

G54.5 #1005 G55.5 #1013 F54.5 #1105 F55 .5 #1113 

G54.6 #1006 G55.6 #1014 F54.6 #1106 F55 .6 #1114 

G54.7 #1007 G55.7 #1015 F54.7 #1107 F55.7 #1115 

TABLE 3.1 Correspondence between Interface Signals and System Variables 

versions of Oi series controls that use what is called Memory Type C. 
For an older control version (i.e., for those using Type A or Type B 
memory) refer to the machine manual. 

Since there is a difference in the tool geometry on lathes and mill­
ing machines, the system variables for the various offset distances 
carry different meanings on these two types of machines. Typically, 
64 (#2000 series) or 99 (#10000 series) offset numbers on a lathe (#10000 
series can be used for 64 offset numbers also), and 200 (#2000 series) 
or 400 (#10000 series) offset numbers on a milling machine (#10000 
series can be used for 200 offset numbers also) are available. It is, 
however, better to use the #10000 series, because its range is higher, 
and it can also be used for the lower range. #2000 series was used in 
older control versions. #10000 series was introduced for the purpose 
of increasing the offset numbers, which also allows for further increase 
beyond 99 (on lathes) and 400 (on milling machines) in future control 
versions. If an attempt is made to read / write undefined system vari­
ables, an error message, "ILLEGAL VARIABLE NUMBER," is dis­
played. For example, a command such as #1 = #10065; would give an 
error message on a lathe with 64 available offsets. Tables 3.2, 3.3, and 
3.4 show the system variables for various offset values on lathe and 
milling machines. 

When offset setting is done, the corresponding system variables 
automatically store the respective offset distances. These are read / write 
variables, so it is also possible to change the offset values by modify­
ing these variables. This can be done by executing, say, #15001 = 5; 
in MDI or memory mode, which will set the specified value (5, in this 
example) as the X-axis geometry offset value corresponding to offset 
number 1, on a lathe. 

For modifying offset values during the program execution, the 
appropriate system variables need not be redefined explicitly. It is 
possible to modify the offset values (and hence, the associated system 
variables also) through the programmable data entry command, G10, 
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Offset Wear Offset Geometry 
Number Value Offset Value 

1 #2001 #2701 

2 #2002 #2702 

X-axis offset values ... ... ... 

... ... .. . 

64 #2064 #2764 

1 #2101 #2801 
f---

2 #2102 #2802 
f-----

Z-axis offset values .. . ... ... 
... .. . .. . 

64 #2164 #2864 

1 #2201 #2901 
-
2 #2202 #2902 

Nose radius values ... ... .. . 
... .. . .. . 

64 #2264 #2964 

1 #2301 

2 #2302 

Tool-tip directions ... ... 

... .. . 
--

64 #2364 

TABLE 3 .2 System Variables for Lathe Offsets (with 64 Offset Numbers) 

which is described in Chap. 13. GlO can also be commanded in the 
MDI mode. 

Since an error in specifying offset values produces bad parts, and 
a serious error may even cause an accident on the machine, offset 
modification should not be done during the automatic execution of a 
program unless its effect is fully verified by first testing the effect of 
the modification in MDI mode. For this, first execute the offset change 
command (direct assignment or through GlO) and the T-code in MDI 
mode, and then check the position display after manually bringing 
the tool to a known position. On a milling machine, tool length com­
pensation code (G43 /G44) also will have to be executed for verifying 
the tool length offset value. Tool radius (nose radius and tip direction 
on a lathe) can simply be seen in the offset tables for verification of its 
value. 
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I Offset Wear Offset Geometry 
j Number Value Offset Value 

1 #10001 #15001 

2 #10002 #15002 

X-axis offset values ... ... .. . 

... ... ... 

99 #10099 #15099 

1 #11001 #16001 

2 #11002 #16002 

Z-axis offset values ... ... .. . 

.. . .. . ... 

99 #11099 #16099 

1 #12001 #17001 

2 #12002 #17002 

Nose radius values .. . .. . .. . 

.. . ... .. . 
99 #12099 #17099 

1 #13001 

2 #13002 

Tool-tip directions .. . ... 
----------···--··---·-----------···--- ----·--------------

... .. . 

99 #13099 

TABLE 3.3 System Variables for Lathe Offsets (with 99 Offset Numbers) 

Workpiece Coordinate System Shift Amount 
The workpiece coordinate systems, defined by G54 etc. can be shifted 
by the desired amounts along the X- and / or Z-axis, through the work­
piece shift screen on a lathe. Such a facility is not available on a milling 
machine. Press the right extension soft key twice on the offset/ setting 
screen, to get the workpiece shift screen. 

Such a shift, which applies to all subsequent operations of the 
machine until the shift value is changed, is useful for shifting the defined 
workpiece coordinate system (by the shift amount, in the opposite 
direction) without changing the offset distances. For example, if the 
position display is 100 and -50 (for the X- and Z-axis, respectively, on a 
lathe), a shift of+ 1 in both the X- and Z-direction would shift the coor­
dinate system by 1 mm in the negative X- and Z-direction, changing the 
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Offset Geometry Offset 
Number Wear Offset Value Value 

1 #10001 (#2001) #11001 (#2201) 

2 #10002 (#2002) #11002 (#2202) 

Tool length I 0 00 000 000 

offset values 
(H) 200 #10200 (#2200) #11200 (#2400) 

-----
000 000 000 

-----1--------- ·- --~------·- ·----- ------ ----·····-··-----------------------

400 #10400 #11400 

1 #12001 #13001 

2 #12002 #13002 
Tool radius 
va lues (D) 

00 0 00 0 000 

00 0 00 0 000 

400 #12400 #13400 

Note: 
1. This table corresponds to parameter 6000#3 = 0. When this parameter is set to 1, the 

wear and geometry variable numbers get interchanged. 
2. When the available offset numbers are not greater than 200, #2001 through #2200 can 

also be used in place of #10001 through #10200. Similarly, #2201 through #2400 can be 
alternatively used for #11001 through #11200. 

TABLE 3.4 System Variables for Milling Machine Offsets (with 200/400 Offset 
Numbers) 

position display to 101 and -49, respectively. The specified shift uni­
formly applies to all the workpiece coordinate systems, defined by 
G54, G55, etc. 

The associated system variables are given in Table 3.5. These are 
read/write variables. For example, to specify a shift of+ 1 for the X-axis, 
set #2501 = 1. Similarly, to read the shift amount for the X-axis, set #1 = 
#2501, and read the value of variable #1 on the macro variable screen. 

Macro Alarms 
Alarm refers to an error condition that terminates the execution of the 
current operation. Pressing the MESSAGE key on the MDI panel 

Controlled Axis System Variable for Shift Amount 

X-axis #2501 
---------------· -- --···- - - . ·- ·- . --. -··-··-·-··-·----·--···-· 

Z-axis #2601 

TABLE 3 .5 System Variables for Workpiece Coordinate 
System Shift Amount 
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shows the error message. The alarm condition may arise due to a 
number of reasons, including hardware problems with the machine. 
Further operation on the machine is possible only after rectifying the 
problem, and then pressing the RESET key. A syntax error in the pro­
gram, out of range values, illegal data entry, etc. are software-related 
error conditions. CNC automatically issues an alarm in such cases. 

There are, however, situations when the control will not sense the 
error, even though the program execution must be terminated. For 
example, a probing system installed on the machine may detect tool 
breakage, necessitating immediate termination of program execution, 
though the control will not recognize this problem. To tackle such 
cases, provision also has been made to issue user-generated alarms, 
which are called macro alarms. 

When a value from 0 to 200 is assigned to system variable #3000, 
the machine stops with the alarm message, "MACRO ALARM." The 
displayed alarm number is 3000 plus the number assigned to it. Thus 
#3000 = 1; would terminate the current operation, and display "3001 
MACRO ALARM" when the MESSAGE key is pressed. 

It is also possible to display a user-specified message up to 26 
characters as alarm message by typing it within parentheses, after the 
assigned value for variable #3000. 

Example: 
#3 000 = 1 (TOOL BROKEN ) ; 

that would display "3001 TOOL BROKEN" on the message screen. 

Time Information 
The system variables for time-related information are given in Table 3.6. 
Variables #3001 and #3002 are read / write variables, whereas #3011 and 
#3012 are read-only variables. So, it is not possible to change the current 
date or time through these variables. 

Current date / time can only be set/ altered on the time setting 
screen, which is called timer/part count screen. (Select MDI mode --7 

Press OFS/SET key --7 Press SETTING soft key --7 Press page down 
key twice --7 Using up / down/left / right arrow keys, bring the cursor 
to time or date display, type the new value and press INPUT key.) 
This screen also displays some time-related information such as 
power ON time and cu tting time, in hour-minute-second format. Part 
count information (the number of parts required and the number of 
parts produced) is also displayed on this screen. This is discussed 
in the section "Number of Machined Parts." 

Automatic Operation Control 
The single-block switch on the MOP can be used to execute a pro­
gram block by block, that is, one block at a time. For executing the 
next block, the CYCLE START button must to be pressed again. 
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Variable Number Function 

This variable functions as a timer, with a 1-ms 
increment. It counts the total "on-time" of the machine 
in the current session. When the power is turned 

#3001 off, the value of this variable is reset to 0. When 
214 7 483648 ms (which is nearly equal to 25 days) is 
reached, the value of this variable resets to 0, and time 
counting starts again. 

This variable functions as a timer, with a 1-hour 
increment. It counts the total "run-time" of the machine 
(i.e., the duration of on-time of the CYCLE START lamp) 

#3002 
in all the sessions. When the power is turned off, the 
value of this variable is preserved. When 9544.371767 
hours (which is nearly equal to 13 months) is reached, 
the value of this variable resets to 0, and time counting 
starts again . 

. --------- -····-----·-----··- . - ..... --- ···-··. ·- ....... ·-··········-------···-·-··-··-···-·····-··--·-··-·-·······-··-··········-····---------·-

This variable stores the current date (year-month-day) 
#3011 in decimal format. For example, 4 February 2009 is 

represented as 20090204. 

This variable stores the current time (hour-minute-
#3012 second) in decimal format. For example, 21 minutes 

and 30 seconds past 8 pm is represented as 202130. 

TABLE 3.6 System Variables for Time Information 

However, it is possible to disable this switch through the system vari­
able #3003. 

Another feature, which is controlled by variable #3003 concerns 
completion of auxiliary functions (M-, S-and T-code), specified in a 
block also having a G-eode. The G-eodes allow specification of auxil­
iary codes in the same block. Whether the execution of the G-eode 
starts immediately or waits for the completion of the auxiliary com­
mand is decided by this variable. For example, if GOl XlOO SSOO; is 
commanded, the linear interpolation may start immediately, without 
waiting for the spindle to attain 500 rpm, or it may wait till the speci­
fied rpm is reached. Note that the T-code possibly cannot be used for 
changing the tool during machining because of a possible interfer­
ence between the tool and the workpiece or the machine body. The 
only use of the T-code, in such a case, would be for changing the tool 
offset number (e.g., T0101, TOlll, T0112, etc., with tool number 1 
being in the cutting position, on a lathe). 

Even if the auxiliary codes are specified in a separate block, the 
execution of the next block may or may not wait for the completion of 
the auxiliary command, depending on the setting of variable #3003. 
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#3003 Single Block Completion of an Auxiliary Function 

0 I Enabled To be awaited 

1 Disabled To be awaited 

2 Enabled Not to be awaited 

3 I Disabled Not to be awaited 

T ABLE 3 .7 System Variable (#3003) for Automatic Operation Control 

Table 3.7 shows the effect of assigning the four permissible values to 
this variable. When the machine is switched on, the value of this vari­
able is 0, irrespective of its value in the previous machining session. 

Another system variable, #3004, controls feed hold and feed over­
ride switches on the MOP as well as the exact stop check performed 
internally by the control at the end of a cutting motion. Pressing the 
feed hold button stops tool movement without terminating the pro­
gram execution. The tool movement starts again as soon as the feed 
hold button is released. The feed override switch allows feedrate 
from 0 to 254 percent of the programmed value (or less, depending on 
the particular machine tools), except in threading where it is auto­
matically disabled by the control (i.e., it remains fixed at 100 percent). 
The exact stop check is performed by the control to ensure that the 
tool reaches the commanded point within specified tolerance. This 
slows down the performance of the machine a bit. So, if too much 
accuracy is not desired for a particular cutting operation (e.g., a rough 
cutting, which is to be followed by a finish cutting), this check may be 
temporarily disabled. Table 3.8 shows the effect of variable #3004 on 
feed hold, feed override, and exact stop check. When the machine is 
switched on, the value of this variable is automatically made 0 by the 
control, irrespective of its value in the previous machining session. 

#3004 Feed Hold Feed Override Exact Stop Check 

0 Enabled Enabled Performed 
·-----1----------- -------
1 Disabled Enabled Performed 

2 Enabled Disabled Performed 

3 Disabled Disabled Performed 

4 Enabled Enabled Not performed 

5 Disabled Enabled Not performed 

6 Enabled Disabled Not performed 
---·----·--

7 Disabled Disabled Not performed 

TABLE 3.8 System Variable (#3004) for Automatic Operation Control 
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Execution Pause 
System variable #3000 generates an alarm condition and terminates 
the program execution, whereas variable #3006 causes temporary 
pause of execution, which can be restarted by pressing the CYCLE 
START button again. In the paused state, pressing the MESSAGE key 
displays the user-specified message (up to 26 characters). Assigning a 
number to variable #3006 halts the program execution. There is no 
significance to this number, because message number is not displayed. 
So, normally, 1 is assigned. Example: 

#3006 = 1 (CHECK THE DIAMETER) ; 

This would temporarily stop the execution, and display "CHECK 
THE DIAMETER" on the message screen. If no message is typed, 
nothing would be displayed. 

Mirror Image Information 
Apart from programmable mirror image command, it is also possible 
to obtain mirror image profiles using external switches on the MOP 
(there are separate switches for different axes), or through the mirror 
image setting screen. (Select MDI mode~ Press OFS/ SET function key 
~ Press SETING soft key ~ Now, after pressing page down key, the 
mirror image screen will appear, on which select 1 for activating the 
mirror image for a particular axis.) 

The mirror image status of each axis is stored in a read-only sys­
tem variable #3007. This is a bit-type variable, but it stores the value 
in decimal form. For example, 00000011 (where 1 indicates mirror 
image enabled and 0 indicates mirror image disabled) is stored as 3. 
So, the value stored in this variable needs to be converted into binary 
for interpreting it. For example, a value of 3 indicates that mirror 
image is enabled for the first two axes. Table 3.9 shows the bit settings 
for this variable. 

On a lathe, the first and the second axes refer to the X- and Z-axis, 
respectively, and on a milling machine, the first three axes refer to the 
X-, Y-, and Z-axis, respectively. Additional axes may or may not be 
available on a particular machine. Only the first four bits of this vari­
able are used for the Fanuc Oi series. 

Number of Machined Parts 
The number of parts required and the number of completed parts in the 
current machining session can be read or written in system variables 

Bit#7 Bit#6 Bit #5 Bit #4 I Bit #3 Bit#2 Bit #1 I Bit#O 

I 4th axis 3rd axis I 2nd axis I 1st axis 

TABLE 3.9 Bit Settings for System Variable #3007 
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#3902 and #3901, respectively. Part count information can also be seen/ 
modified on the timer/ part count screen, or through parameters 6713 
and 6711 which store the number of parts required to be produced and 
the number of parts produced, respectively. 

The timer/ part count screen also displays the total number of 
parts produced during the entire service time of the machine, as 
read-only information. Whenever a part is completed, both the num­
ber of parts produced and the total number of parts produced are 
incremented by 1. While the required and the completed number of 
parts can be altered (through the associated system variables, para­
meter settings, or the setting screen), as and when desired, the total 
number of completed parts can only be altered through parameter 
6712. This information has been made available to keep a record of 
the total number of parts produced during the entire service time of 
the machine. 

The default setting (parameter 6700#0 = 0) of the machine incre­
ments the part count by 1 whenever M02, M30, or theM-code num­
ber specified in parameter 6710 (which normally contains 30 only, 
signifying M30) is executed. If it is desired to increment the part count 
only after theM-code specified in parameter 6710 is executed (which 
may be the same as or different from 02 or 30, but not 0, 98, or 99), set 
parameter 6700#0 = 1. 

Finally, note that M02 or M30 must be typed with the end-of-block 
(EOB) symbol (i.e., as M02; or M30;), otherwise the part count will 
not be incremented, even though the part would be produced with­
out any error message (the control allows the missing EOB symbol at 
the end of the program). 

Modal Information 
The G-eodes have been categorized into different groups based on 
similarity in functionality. At any time, one G-eode from each group 
(except Group 0) remains active. Those belonging to Group 0 are 
called nonmodal codes, which remain effective only in the block where 
they are programmed. Other codes are modal codes, which remain 
effective until replaced by some other code from the same group. For 
example, G01 is a modal code, grouped with GOO, G02, G03, etc. So, if 
G01 is used once in the program, it need not be typed again, if the 
subsequent motions are to be executed with linear interpolation. 
However, as soon as G02 (or some other code from the same group) 
is commanded, G01 is cancelled and G02 becomes active. 

During programming, specially while using general-purpose 
macros, which are to be used with several programs, it may be neces­
sary to know the active G-eode of a particular group. For example, 
referring to a milling machine, if the main program calls a macro in 
incremental mode, the macro should interpret the values in the macro 
call argument list as being incremental values. The macro should work 
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correctly in cases of both absolute and incremental modes of the call­
ing program. This would be possible only if this information is avail­
able while executing the macro. The system variable #4003 stores 90 
or 91 depending on whether absolute or incremental mode is cur­
rently active. The macro can read this to have information about the 
active mode. For example, let us assume that variable #1 of the macro 
represents the absolute X-axis position, and it gets a value through 
the argument list of the macro call. Then, to take care of the possible 
incremental mode of the main program at the time of calling the 
macro, the following statement in the beginning of the macro would 
require to be inserted (IF _THEN_ statement is described in Chap. 5): 

IF [ #4003 EQ 91] THEN #1 = #5041 + #1; 

The system variable #5041 stores the current position of the tool along 
the X-axis, as described in Table 3.11. 

The system variables for various modal information on Fanuc Oi 
series are given in Table 3.10 (a) and (b) . The vacant columns are for 

Variable I 
Number Function G-Code Group 

#4001 GOO,G01,G02,G03,G33,G34,G71-G74 1 

#4002 G96,G97 2 

#4003 3 

#4004 G68,G69 4 

#4005 G98,G99 5 

#4006 G20,G21 6 

#4007 G40,G41,G42 7 
--

#4008 G25,G26 8 
--------------------···--·-· ----~-···--··-····-····--------~·-·····-·-------··--

#4009 G22,G23 9 

#4010 G80-G89 10 

#4011 11 

#4012 G66,G67 12 

#4014 G54-G59 14 

#4015 15 

#4016 G17,G18,G19 16 

#4017 17 

#4018 18 

TABLE 3.10(a) System Variables for Modal Information on a Lathe 
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Variable 
Number Function G-Code Group 

#4019 19 

#4020 20 

#4021 21 

#4022 22 

#4109 F-code (feedrate) 

#4113 M-code number 

#4114 Sequence number 

#4115 Program number 

#4119 S-code (rpm/constant surface speed) 

#4120 T-code (tool number with offset number) 

TABLE 3.10(a) (Continued) 

Variable Number Function G-Code Group 

#4001 GOO, G01,G02,G03, G33 1 

#4002 G17,G18, G19 2 

#4003 G90,G91 3 

#4004 I 4 

#4005 G94,G95 5 

#4006 G20,G21 6 

#4007 G40,G41,G42 7 

#4008 G43,G44,G49 8 

#4009 G73, G74, G76 , G80-G89 9 

#4010 G98 , G99 10 

#4011 G50,G51 11 

#4012 G66 , G67 12 

#4013 G96,G97 13 

#4014 G54-G59 14 

#4015 G61-G64 15 

#4016 G68, G69 16 

#4017 17 

#4018 18 

T ABLE 3 .10(b) System Variables for Modal Information on a Milling Machine 
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Variable Number Function G-Code Group 

#4019 19 

#4020 20 

#4021 21 

#4022 22 

#4102 8-code number 

#4107 D-code number 

#4109 F-code (feedrate) 

#4111 H-code number 

#4113 M-code number 

#4114 Sequence number 

#4115 Program number 

#4119 
S-code (rpm/ constant surface 
speed) 

----~·--

#4120 T-code (tool number) 

P-code number of the currently 
#4130 selected additional workpiece 

coordinate system 

TABLE 3.10(b) System Variables for Modal Information on a Milling Machine 
(Continued) 

··-

other versions of Fanuc. These system variables are, obviously, read­
only variables. Note that all the G-eodes of a particular control ver­
sion may not be available on a particular machine. Some G-eodes 
are optional features of the control (which need to be separately 
purchased), and others cannot be used because of hardware limita­
tion of the machine tool. 

The parameter 6006#1 (on Fanuc Oi series milling machine controls) 
decides whether the modal information obtained through system vari­
ables (#4001 to #4022) is up to the immediately preceding block (which 
is the default setting) or up to the currently executing block: 

6006 #1 

6006 #1 

0 (up to t h e immediately preceding block) 

1 (up to the current l y execu ting b lock) 

The control automatically highlights the currently executing block on 
the display screen. This parameter, however, is not available on lathe 
where model information is available up to the last executed block. 

Current Tool Position 
The system variables, which store information about the current tool 
position, are given in Table 3.11. These are all read-only variables. 
Note the following: 
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Variable Number Function Remark 

#5201-#5204 
External workpiece coordinate system 
offset values 

#5221-#5224 
G54 workpiece coordinate system offset 
values 

#5241-#5244 
G55 workpiece coordinate system offset 
values 

#5261-#5264 
G56 workpiece coordinate system offset 
values 

#5281-#5284 
G57 workpiece coordinate system offset 
va lues 

#5301-#5304 
G58 workpiece coordinate system offset 
va lues 

#5321-#5324 
G59 workpiece coordinate system offset 
va lues 

#7001-#7004 
1st additional workpiece coordinate 
system offset values (G54.1 P1) 

2nd additional workpiece coordinate Optionally 
#7021-#7024 

system offset values (G54.1 P2) available 
on milling 

... 00 0 machines 

#7941-#7944 
48th additional workpiece coordinate 
system offset values (G54.1 P48) 

TABLE 3.12 System Variables for Work Offset Values 

• The first digit from the right (1, 2, 3, or 4) represents an axis 
number. So, on a 2-axis lathe, 1 represents the X-axis, 2 repre­
sents the Z-axis, and the remaining two are not used. This 
also applies to Tables 3.12 and 3.13. 

• The tool position where the skip signal is turned on in a G31 
(skip function) block is stored in variables #5061 to #5064. 
When the skip signal is not turned on during the course of 
tool movement under G31, the specified end point in this 
block is stored in these variables. 

• Certain variables, such as those for the current tool position, 
cannot be read while the tool is moving. The values stored in 
them can only be read when the tool movement stops. So the 
"current position" is not really the instantaneous position. 
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Function Variable Numbers Alternate Variable Numbers 

External offsets #5201-#5204 #2500-#2800 

G54 offsets #5221-#5224 #2501-#2801 

G55 offsets #5241-#5244 #2502-#2802 

G56 offsets #5261-#5264 #2503- #2803 

G57 offsets #5281-#5284 #2504-#2804 

G58 offsets #5301-#5304 #2505-#2805 

G59 offsets #5321-#5324 #2506-#2806 

TABLE 3 .13 Alternate System Variables for Work Offset Values 

Work Offset Values 
Refer to Sec. 5.5 for a detailed discussion on how offset distances for 
various workpiece coordinate systems are defined. The measured work 
offset distances get stored in certain system variables. These are read / 
write variables. So, it is also possible to change the offset distances by 
modifying the contents of these variables. Table 3.12 explains the func­
tion of these variables. Table 3.13 shows alternate variable numbers 
that can also be used on milling machines, for work offset distances. 
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CHAPTER 4 
Macro Functions 

4.1 Types of Macro Functions 
Macro programming is equipped with all the commonly used mathe­
matical functions that are typically available in a high-level computer 
programming language. The available macro functions can be sepa­
rated into groups, to make their understanding and usage easier to 
learn. There are broadly five groups, apart from the usual arithmetic 
operations: 

• Trigonometric functions 

• Rounding functions 

• Miscellaneous functions 

• Logical functions 

• Conversion functions 

A value may be assigned to a variable (or an expression that eval­
uates to a legal variable number) using any combination (that should, 
of course, be logically correct) of these functions . An unassigned 
(undefined) variable is called a null variable that is equivalent to 0 in 
mathematical calculations. So, as a general rule, a variable should not 
be used in any mathematical expression without first defining it. 

Priority of Operations in Arithmetic Expressions 
In a complex expression, involving several functions and brackets, 
the following priority rule is followed: 

1. Brackets (only square brackets are permitted) 

2. Functions (such as SIN, ATAN, SQRT, and EXP) 

3. Multiplication(*), division(/), and bitwise AND 

4. Addition(+), subtraction(- ), bitwise OR, and bitwise XOR 

If more than one operations of equal priority appear in a row, the 
calculation is done from left to right. 

57 
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Examples: 
2 + 2 I 2 
[2 + 2] I 2 

2 I 2 I 2 

(Returns 3) 
(Returns 2) 
(Returns 0.5) 

Priority of Operations in Boolean Expressions 
A Boolean expression can have arithmetic expressions (within square 
brackets) to the left as well as to the right of the conditional operator. 
The priority rules are followed inside each bracket independently: 

[ [ 2 + 2 I 2 ] LT [ 2 + 2 ] ] (Equivalent to [3 LT 4], which 
returns TRUE) 

The arithmetic expression at the right of a conditional operator 
must be enclosed within brackets, but the brackets at the left are 
optional: 

[ 2 + 2 I 2 LT [ 2 + 2 ] ] 

[2 + 2 I 2 LT 2 + 2] 

(Same as above, hence returns TRUE) 

(After evaluating the arithmetic expres­
sion at the left, which returns 3, further 
evaluation is done from left to right. So, 
the statement is equivalent to FALSE+ 2, 
which is meaningless and hence illegal) 

Skipping brackets in Boolean expressions (even if it does not give 
an error, in some cases) is a source of confusion. So, it is a good pro­
gramming practice to use brackets on both sides of conditional opera­
tors, as well as outer brackets for the whole expression. 

Effect of Order of Calculations 
In some cases, the order of calculation does not change the mathe­
matical meaning of an arithmetic expression, and therefore, the same 
final result is expected. However, in certain cases of extremely large 
or extremely small values, the order of calculation may become very 
important: 

#1 10000000; 

#1 #1 * #1 * #1 * #1 

#1 #1 * 100000; 

#2 #1 I 10 * 10; 

#3 #1 * 10 I 10 ; 

#4 #1 * [ 1 0 I 10 l ; 

(Assigns a value of 107 to #1) 

* #1 * #1; 
(Assigns a value of 1042 to #1) 

(Assigns a value of 1047 to #1, which is the 
largest legal value) 

(Sets #2 = 1047) 

(Though the expression on the RHS is math­
ematically the same as the previous expres­
sion, the firs t calculation from the left gives 
1048 which would cause data overflow, ter­
minating the program execution. In such 
cases, brackets can be used to change the 
order of calculation) 

(Sets #4 = 1047
) 
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2 + (2 + (2 + (2 + (2 + [ 2 + 2]]]]] 

~ First operation 
Calculates 4 
~ Second operation 
Calculates 6 

Third operation 
Calculates 8 

Fourth operation 
Calculates 10 

Fifth operation 
Calculates 12 

Final operation 
Calculates 14 

FIGURE 4.1 Nesting of brackets. 

Nesting of Brackets 
Nesting of brackets is permitted up to a maximum of five levels (i.e., 
five left and five right nested brackets can be used), including the 
brackets used with functions such as 

SIN [<a variable number or an arithmetic value or an arithmetic 
expression> 1 
SQRT [<a variable number or an arithmetic value or an arithmetic 
expression> 1 

The calculation starts from the innermost brackets, and proceeds 
to the outermost brackets, one by one. The example given in Fig. 4.1 
is trivial, but it does show the maximum possible level of nesting, and 
explains the order of calculation. 

There is no limitation on the total number of brackets in an expres­
sion. The same expression can have nesting at several places, each 
nesting being restricted to a maximum of five levels. 

4.2 Arithmetic Operations 
The four arithmetic operators, addition (+), subtraction(-), division 
(/),and multiplication(*), carry usual meanings and give calculator­
type results. In fact, these have already been used in several examples. 
The only thing that needs to be repeated here is that the control does 
not differentiate between real numbers and integer numbers. In fact, 
all numbers are treated as real numbers, in calculations. So, 

#1 1 I 2 . 

#1 1 . 0 I 2 0 

#1 1 I 2.0 ; 

#1 1.0 I 2. 0 ; 

are all equivalent, and assign a value of 0.5 to #1. 

www.EngineeringBooksPdf.com



60 Chapter Four 

Another point to mention is about the accuracy of the calculated 
values. Since the calculations are done using a limited number of 
binary digits, typically an error of 10-10 gets introduced in each 
arithmetic operation. This is insignificant because the accuracy of 
the machine is only 0.001 mm in millimeter mode. However, in 
equality comparison statements, this might create problems, as the 
values may not be exactly equal, up to all decimal digits. So, instead 
of using 

IF [#1 EQ #2 ) THEN #3 10; 

use 

IF [ABS[#1 - #2) LT 0.001) THEN #3 = 10; 

assuming 0.001 is the acceptable error (or else, choose a still smaller 
value). Conditional statements are explained in detail in Chap. 5. 

Division versus Block-Skip Function 
The slash symbol (/) is used both for division and the block-skip 
function. Normally, a slash in the beginning of a block is inter­
preted as the block-skip symbol, and that in the middle of a block 
is taken as the division operator. However, some controls (includ­
ing Fanuc) allow mid-block skip also. This may give unexpected 
results. So, on such controls, enclose the division operation within 
brackets: 

#1 10; 

#2 #1 I 2; 

#3 [#1 I 2]; 

(The slash may be interpreted as the block-skip 
symbol. So, #2 is set to 10, if the block-skip switch 
on the MOP is ON) 
(#3 is always set to 5, even if mid-block skip is per­
mitted and the block-skip switch is ON) 

Some machine tool models do not have block-skip switches. On 
such machines, slash is always interpreted as the division operator; 
as such, there is no need to use brackets for division. 

4.3 Trigonometric Functions 
The available functions are 

SIN 

cos 
TAN 
ASIN 
ACOS 
ATAN 
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representing sine, cosine, tangent, arc sine (sin-1
), arc cosine (cos-1

), and arc 
tangent (tan-1

), respectively, the same as those found on scientific cal­
culators. All inputs for SIN, COS, and TAN are in degrees, and the 
outputs of the inverse functions ASIN, ACOS, and ATAN are also in 
degrees. So, if an angle is given in degree/ minute/second format, it 
would need to be converted into degrees using the conversion formula 

where D, M, and S are degree, minute, and second values of the spec­
ified angle, respectively, and Dd is the converted value in degrees. 

Example: 
10° 30' 36" = 10 + 0.5 + 0.01 = 10.51° 

Like all other functions, the trigonometric functions also must be 
used with square brackets. The brackets may contain a constant, a 
variable number, or an arithmetic expression. Note that ATAN uses a 
rather unusual way of representation-the two sides (perpendicular 
and base) of the right-angled triangle are required to be specified 
within separate brackets, separated by a slash: 

#1 

#2 

#3 

#4 

#5 

SIN[30]; 

ACOS [#1]; 

TAN[#2 * 3 I 4]; 

ATAN[SQRT[3]] I [#1 * 2]; 

TAN[90]; 

(Sets #1 = 0.500) 

(Sets #2 = 60.000) 

(Sets #3 = 1.000) 
(Equivalent to tan-1~3. So, 
sets #4 = 60.000) 

(Overflow error, since tan 
90° = oo) 

Note that, like other macro functions, the trigonometric functions 
also are accurate up to about eight decimal digits. For example, 
ACOS[O.S] actually returns 59.999999 on Fanuc Oi control. Such inac­
curacies may be found on all trigonometric functions, even if not 
explicitly mentioned in the examples given here. 

The representation of ATAN is a unique feature of macro pro­
gramming, which always gives the correct value of the angle, even if 
it is not an acute angle (ASIN and ACOS are mainly useful for acute 
angles): 

#5 ATAN[1] I [1]; (Sets #5 = 45.000) 
#6 ATAN[1] I [-1]; (Sets #6 = 135.000) 
#7 ATAN[-1] I [-1]; (Sets #7 = 225.000) 
#8 ATAN[-1] I [1]; (Sets #8 = 315.000) 
#9 ATAN[1]; (Syntax error) 

When parameter 6004#0 is set to 0, the solution range of ATAN is 
0° to 360°, as in the previous examples. When 6004#0 is set to 1, the 
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range becomes -180° to 180° (note that the angle remains same, only 
its representation changes): 

#10 ATAN[1] I [1]; 

#11 ATAN[1] I [-1]; 

#12 ATAN [-1] I [-1]; 

#13 ATAN[-1] I [1]; 

(Sets #10 = 45.000) 

(Sets #11 = 135.000) 

(Sets #12 = -135.000) 

(Sets #13 = -45.000) 

Like other functions, there is no need to enclose the ATAN func­
tion with outer brackets in arithmetic calculations: 

#14 = ATAN[1] I [1] I [1 + 1]; (Sets #14 = 22.500) 

Parameter 6004#0 does not affect ASIN or ACOS. Irrespective of 
the 6004#0 setting, the solution range of ASIN is 270° to 360° and 0° to 
90°, whereas the range of ACOS is 0° to 180°. Hence, ASIN would 
never give an answer in the second or third quadrant. Similarly, ACOS 
does not give an answer in the third or fourth quadrant: 

#15 ASIN[O. 5]; (Sets #15 = 30.000) 

#16 ASIN[-0.5]; (Sets #16 = 330.000) 
#17 ACOS[0.5]; (Sets #17 = 60.000) 

#18 ACOS[-0.5]; (Sets #18 = 120.000) 

So, to avoid any confusion resulting in an inappropriate answer, 
use of ATAN is recommended whenever the angle is likely to vary in 
the entire range of 0° to 360°. 

The magnitude of the value (i.e., the absolute value) specified for 
ACOS and ASIN must be less than or equal to 1, otherwise it would 
generate an alarm condition, terminating the program execution. 

The angles for SIN, COS, and TAN can be positive or negative and 
can even be greater than 360°. Practically, there is no upper limit for 
the angle. Fanuc Oi control allows a maximum value of 1048575.999°. 
The corresponding angle in the 0° to 360° range is calculated by sub­
tracting multiples of 360 from the specified angle. For example, 

1048575.999 = 2912 X 360 + 255.999 

which is equivalent to 255.999°. 
Since the accuracy of the trigonometric functions is typically lQ-8, 

a calculation such as SIN [OJ does not return 0. Some typical calcula­
tion results are 

SIN [ O] 

COS[90] 

TAN[O] 

(Returns -0.46566129 x lQ-8) 

(Returns 0.37252903 x 10-a) 

(Returns -0.46566128 x 10-8) 

Due to the limitation of the display screen, which can show only eight 
decimal digits and does not include any exponential digits, these 
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values are displayed as *********, but used "correctly" in subsequent 
calculations: 

1 I SI N [0] (Returns 214748370.0) 

Inaccuracy of this level is not important for the purpose of a CNC 
machine because the accuracy of the machine is typically 0.001 in mil­
limeter mode and 0.0001 in inch mode. No matter how complex and 
extensive the calculation is, the resulting error is likely to be much 
smaller than the accuracy of the machine. However, as already sug­
gested, the programmer must avoid direct equality comparison of, 
say, SIN[O] with zero. Instead, if required, the difference in values 
should be tested against a chosen small value: 

[SIN [ O] EQ 0 ] (FALSE, so do not use this 
format) 

[ABS [SIN [O ] - 0] LT 0.000000 1 ] (TRUE, hence the recom­
mended format) 

As-long as the programmer understands the implications of such 
inaccuracies, no problem would arise. However, parameter 6004#1 
can be used to normalize the result to 0 whenever the calculated value 
of SIN, COS, and TAN is less than 10-s. When 6004#1 is set to 1 (its 
default setting is 0), 

SIN[ O] 

COS[ 90] 

TAN[O] 

1 I SIN [O ] 

(Returns 0) 
(Returns 0) 
(Returns 0) 
(Execution terminates with an alarm message "DIVIDED 
BY ZERO") 

4.4 Rounding Functions 
Rounding is of two types: implicit rounding and explicit rounding. 
Implicit rounding is automatically done by the control, to suit the 
specific address. Several such cases have already been discussed in 
Chap. 2. Some similar examples are given here to refresh the memory 
(refer to Chap. 2 for details): 

#1 = SQRT[ 2] ; 

#1.5000000 = 1 ; 

M2 . 5 S1000.4; 

M[2 . 5] S[1 000 . 4]; 

G[ 2 . 5 ] ; 

(--/2 = 1.41421356237 . . .. The control uses only 
eight decimal digits, with adequate number of 
leading or trailing zeroes, to save a number. So, 
the value saved is 1.4142136) 
(Equivalent to #2 = 1) 
(Illegal statement) 
(Equivalent to M03 S1000; rounding is done 
only if the number is enclosed by brackets) 
(Never use a G-eode in this manner. It will 
either be an illegal command or may cause 
unexpected tool movement, causing accidents) 
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#3 = 2 .4 ; 

#4 = 2.04; 

M#3; 

G#3; 

G#4; 

#5 = 1 23. 45 678 ; 

GOO X# 5; 

(Equivalent to M02) 

(Illegal statement) 

(Equivalent to C02) 

(Equivalent to GOO X123.457 in millimeter 
mode) 

As a good programming practice, one should never rely on 
implicit rounding, as this is highly error-prone. If the programmer 
does not clearly understand the logic built in the controller, unex­
pected machine behavior may result. Implicit rounding should only 
be done for the purpose of using a real number as an integer number, 
by discarding zeroes after the decimal point (e.g., 1.0 being con­
verted to 1). For example, G#1 is equivalent to GOl, if the value stored 
in #1 is 1, 1., 1.0, or 1.0000000. In fact, this becomes necessary because 
the control does not define a variable as an integer variable; all vari­
ables store real numbers. 

ROUND, FIX, and FUP 
Three functions are available for explicit rounding: ROUND, FIX, and 
FUP. These are used for rounding a real number to the nearest integer, 
the lower integer, and the upper integer, respectively. The operation 
of these functions is similar to that in a typical high-level program­
ming language, except that the CNC control saves the integer answer 
as a real number with zero after the decimal point! 

Examples: 
ROUND [ lO.O] (Returns 10.0) 
ROUND[l0.2] (Returns 10.0) 
ROUND[l0.499999] (Returns 10.0) 
ROUND[l0.5] (Returns 11.0) 
ROUND[l0.8] (Returns 11.0) 
FIX[lO . O] (Returns 10.0) 
FIX[l0.2] (Returns 10.0) 
FIX[l0 . 499999] (Returns 10.0) 
FIX[l0 . 5] (Returns 10.0) 
FIX [ l0.8] (Returns 10.0) 
FUP[lO.O ] (Returns 10.0) 
FUP [lO . OOOOOl] (Returns 11.0) 
FUP[l0.2] (Returns 11.0) 
FUP[10.499999] (Returns 11.0) 
FUP[l0 . 5] (Returns 11.0) 
FUP[l0 . 8] (Returns 11.0) 

The result of operating these functions on a negative number is 
the same as that in the case of a positive number, except that the neg­
ative sign is retained: 
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ROUND[-10.2] 

ROUND[-10.8] 

FIX[-10 . 2] 

FIX[-10.8] 

FUP[-10.2] 

FUP[-10 .8] 

(Returns -10.0) 

(Returns -11.0) 
(Returns -10.0) 

(Returns -10.0) 
(Returns -11.0) 
(Returns -11.0) 
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These functions can also be applied on variables that store some 
value. The following examples assume that #1 stores 1.3, and #2 
stores 1.7: 

ROUND [#1] (Returns 1.0) 

ROUND[-#2] (Returns -2.0) 
FIX[#1] (Returns 1.0) 
FIX[-#2] (Returns -1.0) 

FUP[#1] (Returns 2.0) 

FUP[-#2] (Returns -2.0) 

It is also possible to round a value to the desired number of places 
after the decimal point, which may be needed for some special appli­
cation. For example, if 100.12345 is required to be rounded up to four 
places after the decimal point, carry out the following procedure: 

#1 100.12345; 

#2 #1 * 10000; 

#3 ROUND[#2]; 

#4 #3 I 10000; 

#1 #4; 

(Sets #2 = 1001234.5) 
(Sets #3 = 1001235.0) 

(Sets #4 = 100.12350) 

(#1 contains rounded value up to four places 
after the decimal point, 100.1235) 

These commands are given separately for the purpose of explaining 
the intermediate calculation steps. It is also possible to combine these 
in a single nested block, in the following manner: 

#1 = ROUND[#1 * 10000] I 10000; 

For rounding to three places after the decimal point, use 1000 as the 
multiplier; for two places after the decimal point, use 100, and so on. 

Special care is needed while using the FIX function because of a 
possible inaccuracy in macro calculations. For example, if variable #1 
contains 0.002, and variable #2 is defined as #1 * 1000, the resulting 
value may not exactly be 2. It may typically be 1.9999999. As a result, 
FIX [#2] would return 1.0! So, in such cases, either use the ROUND 
function, or modify the calculated value appropriately. Since the least 
input increment of the machine in millimeter mode is 0.001, it is safe 
to add 0.0001 to the calculated value, for the purpose of rounding it 
down. So, instead of using FIX[#2], use FIX[#2 + 0.0001], which will 
solve the problem. 
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Finally, it is very important to understand that if ROUND is used 
for some axis distance in an NC statement, rounding is done up to 
the least input increment of the machine. The least input increment 
in millimeter mode is typically 0.001 mm, as assumed in the follow­
ing example: 

#1 = 100. 1 23 4 5; 

GOO X [ROUND [ #1 ] ] ; (Places the tool at X= 100.123) 

In fact, the ROUND function is redundant here. As already explained 
in Chap. 2, even without the ROUND function, implicit rounding 
would be done up to the least input increment. So, the second state­
ment is equivalent to 

GOO X#1; 

Also note the presence of the outer bracket in the ROUND function. 
If a function or an expression is being used as the value in an NC 
word, it must be enclosed in brackets is: 

X ROUND [ 1 . 2 ] ; 

X [ROUND [ 1. 2 ] ] ; 

(An illegal command) 

(Equivalent to X1.200) 

It is not that the ROUND function is completely useless in an NC 
statement (as can be concluded from the given example). In fact, it 
can be very effectively used to eliminate the round-off errors during 
program execution. Consider the following case, with 0.001 as the 
least input increment, on a milling machine (assume that the current 
tool position is X100, along the X-axis): 

#1 = 100.23 45; 

#2 = 200.3 45 6 ; 

G91 GOO X#1 ; 

X#2 ; 

X-[#1 + #2 ] ; 

(Places the tool at X200.235) 

(Places the tool at X400.581, because 200.235 + 
200.346 = 400.581) 
(Equivalent to X-[300.5801] which is rounded to 
X -300.580. So, the tool is placed at XlOO.OOl, which 
is not the initial position of the tool) 

Though the difference between the expected position (X100) and the 
actual position (X100.001) is very small (0.001), which may not be of any 
practical concern, it will cause a logical flaw in an application involving 
comparison of tool positions. Moreover, since the error is accumulative, 
it is possible that, after several such operations, the tool may actually 
deviate from the correct position to an unacceptable extent. This problem 
can easily be obviated by replacing the last statement by 

X-[ROUND[#1 ] + ROUND [#2]]; 

which is equivalent to X-[100.235 + 200.346], that is, X-300.581, 
which would place the tool exactly at the expected position. 

www.EngineeringBooksPdf.com



Macro Functions 67 

Note that rounding of axis distances up to the least input incre­
ment is done only if the values are specified in terms of variables, as 
in the cases discussed above. A constant value is truncated up to the 
least input increment. For example, G91 GOO X100.2345 would move 
the tool by 100.234 mm. 

4.5 Miscellaneous Functions 
Additional functions for evaluating square root (SQRT), absolute 
value (ABS), natural logarithm (LN), and exponential value (EXP) are 
available. The calculated values are automatically rounded to eight 
decimal places. SQRT and ABS carry usual meanings and have 
already been used in different contexts. 

SQRT 
This calculates the square root of a given positive number (a negative 
number would give an "ILLEGAL ARGUMENT" alarm message). 
SQRT is the only available function in its category. There is no func­
tion available for calculating, say, the cube root or square of a number. 
However, as explained later, a combination of LN and EXP functions 
can be used for calculating any arbitrary exponent of a given number. 

Examples: 
SQRT[-2) 
SQRT[O] 
SQRT [2 ) 

ABS 

(Illegal argument) 
(Returns 0.000) 
(Returns 1.4142136) 

This function simply changes the sign of a negative value, and has no 
effect on a positive value. 

Examples: 
ABS[-2 ) 
ABS [ O] 
ABS[2 ) 

(Returns 2.000) 
(Returns 0.000) 
(Returns 2.000) 

The "innocent-looking" ABS function comes in very handy at 
times; some such examples have already been discussed. As another 
example, consider a macro that involves a drilling operation using 
G81, on a milling machine. The usual choice for ZO level is the top 
surface of the workpiece. Then, the depth of hole must have a nega­
tive sign in the G81 block. So, when a program calls this macro, a 
negative value for the depth of the hole must be passed on to the 
macro (the method of passing on desired values to the local variables 
of a macro has not been formally discussed so far. So, without both­
ering about the exact procedure, just try to understand the theme of 
the discussion). If, by mistake or due to a misunderstanding, a program­
mer specifies a positive value for the depth, G81 will start "drilling" in 
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the positive Z-direction, away from the workpiece! To make sure that 
both positive and negative values work equally well, it is necessary 
that G81 uses the negative of the absolute value of the specified depth. 
This will ensure that the Z-value for G81 is always negative. For exam­
ple, if variable #26 is used for passing on the value for the depth of the 
hole, the macro should use G81 in the following manne:t;: 

G8 1 X_ Y_ Z-[ABS[ #26 ] ] R_ K_ F_; 

Since a macro is supposed to be a general-purpose program that 
is used (called) by several programs written by different program­
mers, such inconsistencies are not very uncommon. Developing a 
macro requires an in-depth knowledge of macro programming, which 
is a rather vast and specialized subject. So, most of the programmers 
have to use the macros developed by experts, as a black box. Writing 
a macro might be difficult, but, as we will see later, using a macro is 
as simple as using a built-in canned cycle. One only needs to know 
the purpose of the different letter-addresses of the macro. Though it 
is expected that a macro programmer would properly document the 
macro developed by him, by inserting suitable comments in the 
macro and / or by explaining its use on separate handouts, care has to 
be taken for common mistakes. A professional approach to macro 
programming aims at anticipating what can go wrong, before it 
actually goes wrong! 

LN 
This function calculates the natural logarithm, that is, the logarithm to 
the base e (2.7182818). The logarithm to the base 10 (i.e., LOG function) 
is not available. If required, it can be calculated using the formula 

l og x = (ln x) I (ln 1 0), that is, LN[ x] I LN[lO] 

A negative or zero value for the argument of LN is invalid, which 
would give a "CALCULATED DATA OVERFLOW" alarm message. 

Examples: 
LN[O] 
LN[l] 
LN [2] 

EXP 

(Results in overflow error) 
(Returns 0.000) 
(Returns 0.6931472) 

This function calculates the antilog of the natural logarithm (i.e., 
e ). The maximum permissible value for its argument is about 110.2. 
A higher value would give "CALCULATED DATA OVERFLOW," 
as the calculated value would approach / exceed 1048• Antilog to the 
base 10 (i.e ., lOx) is not available. If required, it can be calculated 
using the formula 

10x = e" ln 10 , that is, EXP[ x * LN [ lO]] 
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EXP[-2 ] 

EXP[ O] 

EXP [2 ] 

EXP [ 110 . 2 5] 

(Returns 0.1353353) 
(Returns 1.000) 
(Returns 7.3890561) 
(Overflow error) 

Arbitrary Exponent of a Number 

M a c r o F u n c t i o n s 69 

No standard function is available to evaluate an expression in the 
form xY. It can, however, be calculated in an indirect manner, using 
the formula 

x Y = eY ln x , t h at is , EXP [ y * LN [ x ] ] 

Examples: 
EXP [4 * LN[3]] 

EXP[4 * LN[lO]] 

(Equivalent to 34
, which returns 81.000) 

(Equivalent to 104
, which returns 10000.000) 

4.6 Logical Functions 
The available logical functions are AND, OR, and X OR. These can be 
used in two different manners, as 

• Bitwise functions 

• Boolean functions 

Bitwise Functions 
When used as bitwise functions, all the corresponding bits of the 
binary representations of the two numbers (on which these function 
are operated) are individually compared, and the resulting answer in 
the binary format is converted back to the decimal format. Table 4.1 is 
the truth table for the three functions. Bit-1 and bit-2 are the corre­
sponding bits of the two numbers. 

Figure 4.2 gives the Venn diagram representa tions of these func­
tions. In this figure, the circular area corresponding to a bit represents 
a binary value of 1, and the area lying outside the circle represents 
binary value 0. The shaded area represents the result (binary value 1) 
of the specified logical operation. This figure also indicates that all the 

Blt-1 Blt-2 AND OR XOR 

0 0 0 0 0 

0 1 0 1 1 

1 0 0 1 1 
---

1 1 1 1 0 

TABLE 4.1 Truth Table for Bitwise AND, OR, and XOR 
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Bit-1 

Bit-2 
AND OR 

FIGURE 4.2 Venn diagram representation for bitwise AND, OR , and XOR. 

three logical operations are associative. So, for example, #1 AND #2 is 
equivalent to #2 AND #1. 

Some examples of bitwise logical operations are given below: 

#1 4· (Same as binary 0100) 

#2 3; (Same as binary 0011) 

#3 1· (Same as binary 0001) 
#4 #1 AND #2; (Result in binary form is 0000. So, #4 is set to 0.000) 

#5 #2 AND #3; (Result in binary form is 0001. So, #5 is set to 1.000) 

#6 #1 OR #2; (Result in binary form is 0111. So, #6 is set to 7.000) 

#7 #2 OR #3; (Result in binary form is 0011. So, #7 is set to 3.000) 

#8 #1 XOR #2; (Result in binary form is 0111 . So, #8 is set to 7.000) 

#9 #2 XOR #3; (Result in binary form is 0010. So, #9 is set to 2.000) 

The logical functions are operated upon integers. If an integer 
value (or a variable containing an integer value) is not specified, 
rounding is automatically done to the nearest integer: 

#1 1 . 5; 

#2 

#3 

#4 

1.4999999; 

#1 AND #2; 

2.5 XOR 2.4999999; 

(Equivalent to #3 = 2 AND 1; which is 
bitwise AND of binary numbers 010 
and 001. The result is binary 000, which 
is the same as decimal 0. So, 0.000 is 
stored in #3) 
(Equivalent to #4 = 3 XOR 2; which is 
bitwise XOR of binary numbers 011 
and 010. The result is binary 001, which 
is the same as decimal 1. So, 1.000 is 
stored in #4) 

Though the bitwise operations are actually logical operations, 
they look similar to arithmetic operations. In fact, the result of bitwise 
operations can be used in arithmetic calculations also, though their 
purpose is entirely different. So, a statement like 

#1 = #2 * #3 AND #4; 
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may be meaningless, but not illegal. Note that since multiplication 
and AND have equal priority, the expression would be evaluated 
from left to right as 

#1 = [# 2 * #3 ] AND #4; 

On the other hand, multiplication has higher priority than OR. Hence, 
both the following statements are equivalent: 

#1 #2 OR #3 * #4; 

#1 #2 OR [# 3 * #4]; 

If evaluation of OR is desired first, brackets will have to be used: 

#1 = [#2 OR #3 ] * #4 ; 

One may not always remember all the priority rules, so it is a 
good practice to use brackets to avoid confusion. Extra brackets do no 
harm, except that the maximum permitted level of nesting is five. If 
this limitation creates problem, or if multiple nesting makes the 
expression too complex, break the expression into smaller parts, 
spread over multiple lines. 

Boolean Functions 
The logical AND, OR, and XOR can also be used as Boolean func­
tions, operated upon two Boolean expressions, and the result of oper­
ation is a Boolean value-TRUE or FALSE (recall that bitwise opera­
tion is done on two arithmetic values or arithmetic expressions, and 
the result of operation is an arithmetic value) . These are often used in 
IF and WHILE conditional statements (conditional statements are 
described in detail in the next chapter), in a manner such as 

I F [<conditional expression-!> AND <conditional 
exp r ess i on- 2>] THEN #1 = 1 ; 

which sets #1 = 1, if both conditions are TRUE. 
Such a use of AND, OR, and XOR is similar to AND, OR, and 

XOR functions of any high-level computer programming language, 
and the meaning is the same as that in plain English. The truth table 
(given in Table 4.2) is similar to that of bitwise functions . 

Condltlon-1 Condltlon-2 AND OR XOR 

FALSE FALSE FALSE FALSE FALSE 

FALSE TRUE FALSE TRUE TRUE 

TRUE FALSE FALSE TRUE TRUE 

TRUE TRUE TRUE TRUE FALSE 

TABLE 4.2 Truth Table for Boolean AND, OR , and XOR 
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Condition-1 

Condition-2 
AND OR 

Condition-2 
XOR 

Condition-2 

FIGURE 4.3 Venn diagram representation for Boolean AND, OR, and XOR. 

The Venn diagram representation (shown in Fig. 4.3) also is simi­
lar to that for bitwise functions. In this figure, the circular area corre­
sponding to a condition represents a Boolean value of TRUE, and the 
area lying outside the circle represents a Boolean value of FALSE. The 
shaded area represents the result (Boolean value TRUE) of the speci­
fied logical operation. 

It is important to note that a Boolean value TRUE is not equiva­
lent to the arithmetic value 1, and similarly, FALSE is not equivalent 
to 0. So, a statement such as 

#1 #2 EQ #3; or 

#1 [ #2 EQ #3) ; 

is meaningless, and would give "FORMAT ERROR IN MACRO." It is 
not possible to assign a Boolean value (TRUE or FALSE) to a variable, 
which can only be assigned an arithmetic value. Confusion prevails 
among some macro programmers that if a Boolean value is assigned 
to some variable (as in the given example), 1 or 0 gets stored in the 
variable, corresponding to TRUE and FALSE, respectively. 

Bitwise versus Boolean Operations 
By now, the reader must have realized that whenever AND, OR, and 
XOR are operated upon arithmetic values, these functions behave as 
bitwise functions, and the result is an arithmetic value. On the other 
hand, if these functions are operated upon Boolean values, these 
become Boolean functions, returning a Boolean value (TRUE or 
FALSE). And, of course, arithmetic and Boolean values cannot be 
mixed up with AND, OR, and XOR: 

1 LT 2 AND 3 

[1 LT 2) AND 3 

(Presence of conditional operators, such 
as EQ and LT, makes an expression a 
Boolean expression. A Boolean expres­
sion such as this is evaluated from left to 
right, if there are no brackets. Hence, this 
expression is equivalent to TRUE AND 3, 
which is meaningless, hence illegal) 
(Same as above, hence illegal) 
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1 LT [2 AND 3] (Equivalent to 1 LT 2, which evaluates to 
TRUE) 

1 AND 2 LT 3 (Equivalent to 0 LT 3, which evaluates to 
TRUE) 

1 AND [2 LT 3] (Equivalent to 1 AND TRUE, which is 
meaningless, hence illegal) 

[1 LT 2] AND [3 LT 4] (Equivalent to TRUE AND TRUE. Hence, 
returns TRUE) 

Similarly, Boolean values cannot be used in any arithmetic 
operation: 

1 * [2 LT 3] 

1 * 2 LT 3 

(Equivalent to 1 * TRUE, which is meaningless, hence 
illegal) 
(Equivalent to 2 LT 3, which evaluates to TRUE) 

Skipping brackets and relying exclusively on priority rules may 
make a program difficult to interpret in certain cases, some of which 
have already been discussed. A program should not just be error-free; 
it is important that its logic also is easy to follow. So, especially in 
complex conditional statements, use of extra brackets is highly rec­
ommended. Priority rules should mainly be used for arithmetic oper­
ations only. And, as a rule of thumb, a conditional expression must be 
enclosed within brackets. 

Enabling Boolean Operations 
AND, OR, and XOR, as bitwise functions, are always available on the 
machine. However, their availability as Boolean functions is param­
eter (6006#0) dependent. The default setting of 6006#0 is 0, which 
does not allow AND, OR, and XOR to be used as Boolean functions. 
If their use as Boolean functions is also desired, set this bit to 1. With 
this setting, these functions can be used both as bitwise functions and 
Boolean functions. An example of a mixed use is given below, where 
behavior (bitwise or Boolean operation) of the AND function depends 
on the context of its use: 

IF [[[#1 AND #2] LT 2] AND [#3 LT #4]] THEN #5 = 1; 

Here, the first (from left) occurrence of AND is a bitwise operation, 
whereas the second occurrence is a Boolean operation. 

An Application Example of Bitwise Operation 
The Boolean AND, OR, and XOR are used more often than bitwise 
AND, OR, and XOR in common applications. Bitwise functions are 
normally used in conjunction with system variables for interface sig­
nals for interacting with external devices connected to the CNC. 

As an example, consider the case where several pallets are 
available for holding the workpieces for a milling machine, and the 
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program needs to know whether the correct pallet is loaded. Each 
pallet has a unique designation number (e.g., 27), and a binary cod­
ing system to indicate this number. It also has a number of indepen­
dent N / 0 (normally open) limit switches (one switch for each binary 
signal) to indicate whether it is loaded or empty. 

Though the method described below is simple, it is not the best 
method, given practical considerations. It is given here because 
unless one realizes the limitation of a particular solution, one will 
not be able to appreciate the best solution. A better method is 
described at the end. 

In a simple coding arrangement, there can be an eight-pole dual 
in-line package (DIP) switch attached to each pallet (assuming, the 
largest pallet numbers is 255 or less), and the switch setting would 
indicate the pallet number (in binary, i.e., 0 for OFF and 1 for ON), 
which would be OOOllOll corresponding to 27. A DIP switch is a set 
of manual electric switches that are arranged in a group in a standard 
package. The whole package unit is referred to as a DIP switch in the 
singular. DIP is sometimes also referred to as OIL (dual in-line). This 
type of switch is designed to be used on a printed circuit board (PCB) 
along with other electronic components and is commonly used to 
customize the behavior of an electronic device for specific situations. 
Several types of DIP switches are available. The slide-type and the 
rocker-type DIP switches are very commonly used for binary coding. 
These are arrays of simple single-pole, single-throw (SPST) contacts, 
which can be either ON or OFF. This allows each switch to select a one­
bit binary value. The values of all switches in the package can be inter­
preted as a decimal number. Eight switches offer 256 combinations­
a to 255-corresponding to 00000000 and 1ll1llll, respectively. A 
common multipin IC is another example of a dual in-line package. 

Each pole of the DIP switch is connected in series with an inde­
pendent N/0 limit switch, so that the binary signals would be sent 
only if the limit switch is pressed. A physical connection, through a 
ribbon cable (having eight signal wires and one common wire) 
between the terminal strip of the input/output (1/0) module of the 
PMC and the limit switches of each pallet, would be needed for send­
ing the signals to the PMC. 

Addition of eight rungs in the PMC ladder, one for each input 
signal, for writing these signals (in a sequential manner) to the appro­
priate G-signals (G54.0 to G54.7), would define the corresponding 
system variables (#1000 to #1007, and #1032). While #1000 to #1007 
would contain 0 or 1, corresponding to the OFF /ON state of the cor­
responding switch, #1032 would contain the complete information in 
its 16 bits (in fact, the decimal interpretation of the binary representa­
tion, 27 in this case, would get stored in #1032). So, by analyzing the 
content of #1032 bitwise AND/OR/XOR are needed for this pur­
pose. For example, #1032 XOR 27 would return 0 for #1032 = 27, and 
a nonzero number otherwise. So, a 0 value would confirm that pallet 
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number 27 is loaded), information about the loaded pallet becomes 
available inside the program that may take appropriate machining 
decisions, suitable for the workpiece on that specific pallet. 

The method explained above is theoretically correct, but not prac­
tical, because of a possible interference caused by the cables (that run 
from each pallet to the terminal strip) in a moving system. A practical 
method is described below. 

First determine the maximum number of different pallets there 
will be. Two pallets can be encoded with just one switch (ON or OFF). 
Four pallets with two switches (OFF/OFF, ON/ OFF, OFF/ ON, and 
ON/ ON), eight pallets with three switches, sixteen pallets with four 
switches, and so on. There is no need to use eight switches unless 
there are 256 pallets. In addition to the "binary number" switch array, 
an additional switch would be needed to confirm whether the pallet 
is loaded and locked. Now, what remains is how to actuate these 
switches. 

All the switches (push-to-ON type) are mounted on the station­
ary part of the machine, underneath where the pallets are clamped 
down. The pallets simply have protruded (meaning 1) or recessed 
(meaning 0) little buttons (the number of buttons being equal to the 
number of switches) on the bottom, that line up with the switches 
mounted on the machine. When a pallet is locked down, a certain 
combination of switches gets actuated by the buttons on the pallet, 
indicating its number. The additional switch, to sense whether or not 
a pallet is loaded, is actuated by all the pallets in the same manner. 
And there is no need to have a physical series connection between 
this switch and the switches used for pallet coding purpose (in fact, 
for such a connection, several independent switches would be 
needed-one for each coding switch). Instead, it may appear as an 
N / 0 relay, in series, in all the ladder rungs corresponding to other 
switches. The array of switches and the additional switch are perma­
nently wired to the 1/0 module with a cable. So, just a single cable is 
needed, which always remains stationary, fixed to the stationary parts 
of the machine. 

A more sophisticated pallet system might use bar-coding or a 
radio frequency (RF) tag to pass more information to the machine 
than just a pallet number. 

Knowledge of the ladder language is a prerequisite for such appli­
cations. Though ladder language is not covered in this text, a brief 
description of wiring methods is given in Chap. 12. 

4. 7 Conversion Functions 
The available functions are BIN and BCD which are used for convert­
ing a number from binary-coded decimal forma t to binary format, 
and vice versa. These functions are used for two-way signal exchange 
between the PMC (which uses signals in binary format) and the 
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Decimal Binary 
Number BCD Representation Interpretation 

0 0000 0000 0000 0000 0 

1 0000 0000 0000 0001 1 
··-·--- ·-----·--------··- ·---·--

9 0000 0000 0000 1001 9 

10 0000 0000 0001 0000 16 

19 0000 0000 00011001 25 

20 0000 0000 0010 0000 32 

99 0000 0000 10011001 153 

100 0000 0001 0000 0000 256 
-------

999 0000 1001 1001 1001 2457 
-------

1000 0001 0000 0000 0000 4096 

9999 1001 10011001 1001 39321 

TABLE 4 .3 BCD Representation of Decimal Numbers 

external devices (that might be using signals in binary-coded decimal 
format, e.g., for seven-segment display of each digit of a number, 
separately), connected to the CNC 

Recall that, in the binary-coded decimal (BCD) representation of 
a decimal number, each digit of the number is independently repre­
sented by four binary digits. Refer to Table 4.3 for some examples of 
BCD representations of up to four-digit decimal numbers. Note that 
four binary digits can have a highest decimal value of 15, but since 
the highest decimal digit is only 9, 1010 and above (i.e., up to 1111) do 
not appear in BCD representation. 

Format: 

#i BCD[<binary interpretat ion of a binary number>]; 

#i BIN[<binary interpretation of a BCD number>]; 

The arguments of both BCD and BIN are binary interpretations, and 
the results of conversion are again interpreted in binary. Note that the 
binary interpretation of a binary number is the actual number, but 
such an interpretation of a BCD number is not the number that the 
BCD represents. Format conversion is done with respect to the actual 
decimal number that is being represented in the two formats. 

Examples: 
#1 = BCD[lO]; (Converts 1010 to 0001 0000, corresponding to equiva­

lent decimal number 10. Explanation: There is a binary 
number (1010) which, when interpreted in binary, is 10. 
So, 10 is the argument of the BCD function. This number, 
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when converted to BCD format, becomes 0001 0000. The 
decimal interpretation of the converted BCD representa­
tion is 16. So, #1 stores 16} 
(Converts 0001 0000 to 1010, corresponding to equivalent 
decimal number 10. Explanation: There is a BCD number 
(0001 0000), which, when interpreted in binary, is 16. So, 
16 is the argument of the BIN function. This number, 
which is actually decimal 10, becomes 1010 when con­
verted to binary format. The decimal interpretation of the 
converted binary representation is 10. So, #2 stores 10) 

Note that, in both the examples, the same decimal number 10 is 
involved in conversion. The concept would be easier to understand if 
it is realized that the representation of a given decimal number in 
one format is converted to the representation of the same decimal 
number in the other format. 

Following similar logic, verify, as an exercise, that BCD [64] 
returns 100, and BIN [100] returns 64: 

0110 01 00 ~ 1000000 (Both represent decimal number 64 in BCD 
and binary formats, respectively) 

Negative values for the arguments of BCD and BIN are not 
allowed (an "ILLEGAL ARGUMENT" alarm message would be dis­
played). The arguments should be integers. If a real value is specified, 
rounding to the nearest integer is automatically done. 

These functions are used in conjunction with system variables for 
interface signals (explained in Chap. 3), which are used for receiving/ 
sending 16-bit/ 32-bit signals to / from the PM C. For example, if variable 
#1032 corresponds to input sta tus 0000000000010011, it will store a 
decimal value of 19.000: 

#1 = # 1032 ; (#1 is set to 19.000) 

If the same signal is to be sent to an external device(s), in the BCD 
format, through variable #1132, BCD function would be needed: 

#2 = BCD[ #1]; 

#1132 = #2; 

(The BCD representation of 19 is 0000 0000 00011001. 
Its binary interpretation is 25. So, #2 is set to 25) 

(#1132 sends the required BCD signal, 
0000000000011001} 

In fact, there is no need to involve intermediate variables. The follow­
ing statement would do the same thing: 

#1132 = BCD[ #1032] ; 

The BIN and BCD functions can also be used for variable #1133 
that sends a 32-bit signal. Since the representation of a single-bit sig­
nal, in both binary and BCD formats, is the same, these functions are 
not needed for variables #1000 to #1015, and #1100 to #1115. 

www.EngineeringBooksPdf.com



CHAPTER 5 
Branches and Loops 

I n a program, the sequence of execution can be changed using 
GOTO and IF _GOTO_ statements, which is called branching. 
These statements can also be used to create a loop, and execute it 

repeatedly until a certain condition gets satisfied. This, however, is 
not considered a good method of creating loops. It is a standard 
practice to avoid the use of GOTO in any structured programming 
language (such as Pascal), as it makes the program less readable. 
Moreover, it also introduces an element of risk, as a subsequent change 
in the sequence numbers might make the program unusable. Better 
methods are available. Custom Macro B provides the WHILE statement 
for this purpose. 

5.1 Unconditional Branching 
The format is 

GOTO n; 

where n is the desired sequence number (l to 99999). 
This causes an unconditional jump to the specified sequence 

number (recall that sequence number is also referred to as block num­
ber or line number or N-number) . The sequence number in the GOTO 
statement can also be specified using a variable or an expression. 

If the specified sequence number does not lie in the range 1 to 
99999, or if the program does not contain the specified sequence num­
ber, further execution of the program terminates with an alarm. 

It is not necessary to have sequence numbers for all the blocks of 
the program; only the target blocks must have sequence numbers. 

Duplication of sequence numbers is permitted in a part program, 
though not recommended, as it might cause inadvertent errors. With 
the GOTO statement, it would result in an ambiguous branching 
instruction, generating an error condition. So, for the sake of good 
programming practice, the same sequence number must not appear 
more than once in a part program, especially when the program uses 
macro programming features . 

79 

www.EngineeringBooksPdf.com



80 Chapter Five 

Some examples of unconditional jump are given below: 

GOTO 100; 

#1 = 1000; 

GOTO #1; 

GOT0(#1 + 100]; 

GOTO 0; 

GOTO 100000 ; 

(Flow of program execution jumps to N100 block. If 
such a sequence number does not exist in the pro­
gram, further execution would be terminated, and an 
alarm message would be displayed on the screen) 

(Jumps to N1000 block) 
(Jumps to NllOO block) 

(Illegal command) 

(Illegal command) 

The argument of GOTO is expected to be an integer. However, if 
a real number is specified, or if the variable or the expression, used as 
the argument, evaluates to a real number, rounding is automatically 
done to the nearest integer: 

GOTO 100.0; 

GOTO 100.49999; 

GOTO 100.5; 

#1 = 100.49999 ; 

GOTO #1; 

GOT0(#1 + .00001]; 

(Equivalent to GOTO 100) 
(Equivalent to GOTO 100. More than eight dig­
its, such as 100.499990, is not allowed) 
(Equivalent to GOTO 101) 

(Jumps to N100 block) 

(Jumps to N101 block) 

Though such a use of GOTO is only a theoretical possibility, and 
never likely to occur in a practical situation, a thorough understand­
ing of the logic being followed by the control helps in error diagnosis. 
At least, typing mistakes are always possible, which might give unex­
pected results, without generating any error message! 

5.2 Conditional Branching 
In conditional branching, GOTO is used in conjunction with a condi­
tional expression. The format is 

IF (<a conditional expression>] GOTO n; 

If the specified condition is satisfied (i.e., evaluates to TRUE), the pro­
gram execution jumps to sequence number n. If the specified condi­
tion is not satisfied (i.e., evaluates to FALSE), execution proceeds to 
the next block. The conditional expression must be enclosed within 
square brackets. 

The six available conditional operators, which can be used in a 
conditional expression, carry the meanings given in Table 5.1 (these 
operators have already been used in various contexts; here they are 
described formally) . Note that the equivalent mathematical symbols, 
shown in this table, are given for reference only. These cannot be used 
as conditional operators. 
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Mathematical 
Operator Meaning Symbol 

LT Less than < 

LE Less than or equal to :5: 

EQ Equal to = 

NE I Not equal to ~ 

GE Greater than or equal to ~ 

GT Greater than > 

TABLE 5.1 Boolean or Conditional Operators 

The conditional operators are used for comparison between two 
constants/variables/ arithmetic expressions, in any combination (e.g., 
comparison between a constant and a variable, or between a variable 
and an arithmetic expression, etc). The arithmetic expression(s), if any, 
must be enclosed within separate square brackets. 

Examples: 
[2 LT 3] 

[2 LT #1] 

[#1 LT #2] 
[2 LT [#2 + #3]] 
[#1 LT [# 2 * 5]] 
[[#1 * #2) LT [1 3 + 10] ] 

The arithmetic expressions can also use any of the available mathe­
matical functions and/ or bitwise logical functions: 

[1 LT TAN[I1]] 

[11 LT [12 AND #3)) 

An arithmetic expression can have multiple levels of nesting. But 
overall, there can be up to a maximum of five left and five right nested 
brackets. In a complex expression, always count the number of brack­
ets to make sure that the left and the right brackets are equal in number, 
otherwise, the expression would become meaningless, generating an 
alarm condition: 

[#1 LT [ROUND[SQRT[#2 * [13 + #4)) )]] 

This expression has five left and five right brackets. Note that the two 
consecutive functions (ROUND and SQRT, in this example) must be 
separated by square brackets. 

Too complex an expression should preferably be broken into 
smaller parts, spread over several lines, to make it easy to interpret. 
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For example, the expression given above may be replaced by the fol­
lowing blocks: 

#100 #2 * [# 3 + #4]; 

#100 SQRT[#100]; 

#10 0 ROUND[#100]; 

Thereafter, a simple expression [#1 LT #100] can be used in place of 
the original expression. 

It is also permitted to use a combination of multiple conditions, 
coupled with Boolean AND, OR, and XOR, provided the parameter 
6006#0 is set to 1. For example, it may be desired to take an action if 
two conditions are both TRUE at the same time. Such an example is 
already given toward the end of Sec. 4.6. In fact, any combination of 
the three Boolean functions can be used to simulate a complex condi­
tion. Note that, in a complex expression, it is better to make use of 
brackets to indicate the hierarchy of evaluation, even if these may 
actually be redundant due to priority rules. This makes the expres­
sion more readable and reduces the possibility of logical errors: 

IF [[[ #1 LT #2] AND [#3 LT #4]] OR [[#5 LT #6] XOR [#7 
LT #8]]] GOTO 100; 

The total number of nested left and right brackets is three each in this 
command. Without nesting, any number of brackets can be used. 
Seven left and seven right brackets have been used in this example. 

Finally, as a practical example of conditional branching, consider 
the problem of calculating the sum of all numbers from 1 to 10 (i.e., 
1 + 2 + 3 + ... + 9 + 10). The flowchart for a summation algorithm, 
along with its execution trace, is shown in Fig. 5.1. It is a good pro­
gramming practice to first prepare a flowchart for the chosen algorithm, 
and trace the execution, as far as possible. Program coding should be 
started only after fully verifying the algorithm. This reduces the pos­
sibility of logical errors to a great extent. 

There is one more advantage of working with a flowchart. The 
macro variables do not reflect the physical meaning of a variable 
(which is really a serious limitation of macro programming). For 
example, if variable #100 is defined to contain the value of a certain 
variable, one would always have to remember the meaning of #100. 
This becomes difficult when working with a large number of vari­
ables. As a result, developing a program becomes a bit difficult because 
one does not have an intuitive feeling of which variable is being used 
for which purpose. The human brain does not work like a computer. 
In fact, this is one of the reasons why some programmers find macro 
programming too complex. A flowchart solves this problem. Once it is 
prepared, one simply has to copy it in terms of macro variables, and 
the program is ready! So, drawing a flowchart should not be consid­
ered an additional and unnecessary exercise. It does take some time 
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execution trace 
number sum 

initial values of number and sum 1 1 
values after executing I loop 2 3 
values after executing II loop 3 6 
values after executing Ill loop 4 10 
values after executing IV loop 5 15 
values after executing V loop 6 21 
values after executing VI loop 7 28 
values after executing VII loop 8 36 
values after executing VIII loop 9 45 
values after executing IX loop 10 55 

final sum 55 

F IGURE 5.1 Flowchart and execution trace of a summation algorithm. 

initially, but ultimately, a complex program may be ready in much less 
time. Moreover, in a complex program, error diagnosis becomes 
extremely difficult if there is no flowchart. In the macro programming 
area, many a time, the slower one moves, the faster one reaches the 
destination. So, as a rule of thumb, one should never start program 
coding without first preparing a flowchart, especially if one is new to 
macro programming. Otherwise, the abstract nature of a macro pro­
gram, which makes it look too complex, may discourage a new learner 
to study it further, and the battle would be lost before fighting it! 

The next step after algorithm verification is to assign variable 
numbers to all the variables which appear in the flowchart. For the sake 
of proper documentation, the chosen variables should be described in 
the beginning of the program, within comments, for the benefit of other 
users who may wish to analyze the program. Now, writing the program 
is simply a matter of converting the flowchart into a coded language. 
Program number 8000 is based on the flowchart given in Fig. 5.1. 

08000 (SUMMATION OF NUMBERS); 

(The program number for a macro is 
usually chosen from 8000 or 9000 series, 
as it is possible to edit-protect these 
programs, to avoid their accidental 
editing/ deletion . Parameter settings 
3202#0 = 1 and 3202#4 = 1 edit-protect 
program numbers 8000 to 8999, and 
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(#1 @ NUMBER); 

(#2 @ SUM); 

(#3@ MAX NUMBER); 

(#5 00 @ FINAL SUM); 

#1 1; 

#2 #1 ; 

#3 10; 

N10 #1 = #1 + 1; 

#2 = #2 + #1; 

IF [#1 LT #3] GOTO 

#500 #2 ; 

M30; 

10; 

9000 to 9999, respectively. In fact, the 
protected programs are not even dis­
played . Only the program numbers 
of such programs can be displayed in 
directory search, provided parameter 
3202#6 is set to 1) 

(Note that the MDI panel has keys only 
for the upper-case alphabets, and no key 
for the @ character. @ can be typed using 
a soft key. Refer to Sec. 2.2 for details) 

(Up to which summation is desired) 

(This is a blank NC statement, which 
does not do anything. It has been 
inserted here for better readability of 
the program) 
(Initial value of NUMBER) 
(Initial value of SUM) 
(Summation from 1 to 10 is desired) 
(NUMBER incremented by 1) 
(SUM calculated) 
(Branching to N10 if the current value of 
the NUMBER is less than 10) 
(The final value of the SUM stored in 
the permanent common variable #500) 
(Replace M30 by M99 if this program is 
to be called by other programs) 

Note that M02 and M30 include RESET action. So, these clear all 
local variables (i.e., #1 to #33) as well as common variables (#100 to 
#199) to null. Hence, if a value is required to be available even after 
the end of a program (e.g., for examining its value or for using it 
across different programs), it has to be stored in a permanent com­
mon variable. So, when the execution of the given program ends, #1, 
#2, and #3 are cleared to null, and the final value of the sum (which is 
55, in this example) remains stored in #500, which can be displayed 
on the macro variable screen (refer to Sec. 1.3 for the method of dis­
playing macro variables) . 

Though macro-programming features can be used in any program 
(the program given above is an example, which can be executed as the 
main program), a macro program or a subprogram is invariably designed 
to be called by other programs (main programs, subprograms, or macro 
programs). As mentioned in Sec. 3.3, and discussed in detail in Chaps. 6 
and 7, a subprogram is called by M98, and a macro program (which is 
simply referred to as a macro) is called by G65 or G66. And, if a program 
is designed to be called by other programs, it must end with M99, rather 
than M30. So, if any of the programs given in this chapter are to be 
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called by other programs, replace M30 by M99 in the end. M30 has 
deliberately been used so that these programs could be run as main pro­
grams. M99 at the end of a main program runs the program repeatedly, 
in an infinite loop, until the RESET key is pressed. 

Also recall that if a comment is inserted immediately after the 
0-word, as has been done in this program, the directory display (for 
directory display, press the PROG function key, followed by the DIR 
soft key, or press the PROG key twice, in the EDIT mode) on the MDI 
screen shows the inserted comment (up to 31 characters on 7.2-in 
LCD screen) along with the program number. This is a recommended 
practice, as one gets the information about the type of a program with­
out opening it (i.e., 0 SRHing it). 

The given program is quite general in nature. For example, if 
summation from 1 to 100 is desired, simply change the #3 value to 100 
in the beginning of the program, and the obtained summation value 
would be 5050. A good macro program should provide for such flex­
ibility in the very beginning of the program, so that other users 
(a macro is invariably designed to be used by several users), who 
may not be expert programmers, do not have to analyze the whole 
program to figure out where it needs to be edited. 

As an exercise, the reader may try to write a program for calculating 
the sum of squares of the first 10 numbers (i.e., 12 + 22 + · · · + 10Z). The 
program would nearly be the same as the one given above for calculating 
the sum of the first 10 numbers. Only the #2 = #2 + #1 statement would 
need to be replaced by #2 = #2 + #1 * #1. The answer would be 385. 

Though permanent common variables are very useful for appli­
cations such as the one just discussed, prestored values may not 
always be desirable, as this may result in incorrect initialization of 
variables in some cases (e.g., #500 = #500 + #1, where the initial value 
of #500 is desired to be 0). Moreover, it can never be said with cer­
tainty if the displayed values are actually calculated by the program 
or are just the old values. So, for the sake of safe programming prac­
tice, all the permanent common variables, which are to be used in a 
program, are set to null in the very beginning of the program, unless 
their old values are actually needed. 

In some cases, it may even be desirable to clear all the permanent 
common variables. Program number 8001 does the same, setting all vari­
ables in the range #500 to #999 to null. The execution completes in about 
10 seconds on Oi Mate TC (macro calculations are not very fast). The 
flowchart of an algorithm and its execution trace are shown in Fig. 5.2. 

08001 (CLEARING ALL PERMANENT COMM VARS); 

(#1 @ COUNTER); 

#1 = 500; 

N10 # [#1] #0; 

(Initial value of COUNTER) 
(The variable number, referenced by 
COUNTER, set to null) 
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variable referenced by 
counter = null !.---

counter= counter+ 1 

yes 

execution trace 
counter #500 #501 #502 .. . #999 

initial values of counter and variables 500 old old old ... old 
values after executing I loop 501 null old old ... old 
values after executing II loop 502 null null old ... old 
values after executing Il l loop 503 null null null ... old 

... .. . ... .. . .. . . .. . .. 

... ... . .. ... ... .. . . .. 
values after executing 499th loop 999 null null null ... old 
values after executing SOOth loop 1000 null null null ... null 

FIGURE 5.2 Flowchart and execution trace of an algorithm for clearing all 
permanent common variables . 

#1 = #1 + 1; (COUNTER incremented by 1, for 
selecting the next variable) 

IF [#1 LE 999) GOTO 10; (Branches to N10 if #1 is less than or 
equal to 999, i.e., if all the variables up 
to #999 are not cleared) 

M30; 

A more complex example is to calculate the sample standard 
deviation (crn_

1
) of, say, 10 given numbers which are stored in #1 

through #10. The mathematical formula is 

- LX 
X= --~ 

() = n- 1 

n 

I(x- xy 
n -1 
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where x. =individual data 
I 

n = the total number of data 
x = the average value of the given data 

The flowchart of an algorithm for calculating crn_
1 

is given in 
Fig. 5.3. Program number 8002 is based on this algorithm. Though 
any values can be stored in the variables #1 to #10, the chosen values 
in this example are 1, 2, 3, . . . , 10, respectively. The obtained answer 
would be 3.0276503. This program can be used for calculating crn_

1 
for 

up to 33 numbers, stored in #1 through #33. 

number = 10 
counter= 1 
sum =value stored in the first variable 

counter = counter + 1 
sum = sum + value stored in the variable referenced by counter 

yes 

counter= 1 
sum of square deviation =square of (average - value stored in the first variable) 

counter = counter + 1 
sum of square deviation = sum of square deviation + square of (average- value 

stored in the variable referenced by counter) 

yes 

mean square deviation = sum of square deviation/( number - 1) 
standard deviation = square root of mean square deviation 

FIGURE 5.3 Flowchart of an algorithm for calculating the sample standard deviation. 
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08002 (STANDARD DEVIATION CALCULATION); 
(#1 THROUGH #10 @ DATA); 

(STORE DESIRED VALUES IN #1 ... #10); 
(#100@ NUMBER OF GIVEN DATA); 
(SET #100 TO THE NUMBER OF DATA); 
(#101 @ COUNTER); 

(#102 @ SUM OF GIVEN DATA); 
(#103@ AVERAGE OF GIVEN DATA); 
(#104@ SUM OF SQUARE DEVIATION); 
(#105@ MEAN SQUARE DEVIATION); 
(#501 @ STANDARD DEVIATION); 

#1 
#2 

#3 
#4 
#5 
#6 
#7 
#8 
#9 
#10 

#100 

#101 
#102 

= 

1; 
2; 

3; 
4; 

5; 
6; 
7; 
8; 
9; 
10; 

10; 
1; 

#1; 
N10 #101 = #101 + 1; 
#102 = #102 + #[#101]; 

(First data) 
(Second data) 
(Third data) 
(Fourth data) 
(Fifth data) 
(Sixth data) 
(Seventh data) 
(Eighth data) 
(Ninth data) 
(Tenth data. Note that the data-entry 
step is not shown in the flowchart) 
(NUMBER of data) 
(Initial value of COUNTER) 
(Initial SUM set to the first data) 
(COUNTER incremented by 1) 
(Next data added to SUM) 

IF [#101 LT #100] GOTO 10; (BranchingtoN10ifalldataarenot 

#103 #102 I #100; 
#101 1; 

added to SUM) 
(AVERAGE calculated) 
(COUNTER initialized to 1) 

#104 [#103 - #1] * [#103 - #1]; 
(Initial SUM OF SQUARE DEVIA­
TION set to the square deviation for 
the first data) 

N2 0 # 101 = # 101 + 1; (COUNTER incremented by 1) 
#104 = #104 + [#103- #[#101]] * [#103- #[#101]]; 

IF [#101 LT #100] GOTO 20; 

#105 #104 I [#100 - 1]; 

#501 SQRT[#105]; 

M30; 

(Square deviation for the next 
data added to SUM OF SQUARE 
DEVIATION) 
(Branching to N20 if square devia­
tions for all data are not added to 
SUM OF SQUARE DEVIATION) 
(MEAN SQUARE DEVIATION 
calculated) 
(STANDARD DEVIATION calcu­
lated and stored in the permanent 
corrunon variable #501) 
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Note that, on a 7.2-in LCD screen, it is not possible to continu­
ously type more than 34 characters in one block, using the MDI keys. 
In a complex mathematical calculation, more than 34 characters in a 
block do appear. For example, in the standard deviation program, 
there is a block (the one next to the N20 block) with 40 characters. The 
only way to have such blocks in a program is to first type the pro­
gram on a PC, and then download it to the CNC through the RS-232C 
port. This way, a block with practically any number of characters can 
be used in a program. If, however, the program is to be typed using 
MDI keys only, a long block (with more than 34 characters) would 
need to be split into smaller blocks. For example, 

#104 = #104 + [#103 - # [#101)) * [#103 - # [#101)); 

can be split into smaller blocks in the following manner, which will 
have the same effect: 

#111 #103 #[#101); 

#111 #111 * #111; 

#104 #104 + #111; 

(A new variable #111 introduced for 
intermediate calculations) 

The next example finds the roots of a quadratic equation in the 
form 

ax 2 + bx+c = 0 

The formula for the two roots is 

and 

The flowchart of an algorithm for finding the two roots is shown 
in Fig. 5.4. In program number 8003, which is based on this algo­
rithm, any values can be assigned to the variables corresponding to a, 
b, and c. Here, 1, 1, and -2 have been taken, which give 1 and -2 as the 
solution for the two roots. 

08003 (QUADRATIC EQUATION SOLUTION); 

(FORM @ A * X * X + B * X + C = 0); 
(#1 @ A); 

(#2 @ B); 

(#3 @ C); 

(ASSIGN DESIRED VALUES TO A,B,C); 

(#100@ DISCRIMINANT); 

( #502 @ ROOT1) ; 

( #503 @ ROOT2) ; 

#1 = 1; (a, i.e., coefficient of x2) 
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a = <assign a value> 
b = <assign a value> 
c = <assign a value> 

yes 
~---+idisplay error message 

root1 = (- b + square root of determinant)/(2 * a) 
root2 = (-b- square root of determinant)/(2 * a) 

F IGURE 5.4 Flowchart of an algorithm for finding roots of a quadratic 
equation. 

#2 = 1; 

#3 = -2; 

#100 = #2 * #2 - 4 * #1 * #3; 

(b, i.e., coefficient of x) 

(c, i.e., constant term) 

(Determinant calculated) 

IF [ABS[#100] LT 0.000001] GOTO 10; 

IF [#100 LT 0] THEN #3000 

(Branching to NlO if determinant 
is 0) 

1 ( IMAG ROOTS) ; 

("3001 IMAG ROOTS" displayed 
and execution terminated, for a 
negative determinant. IF_THEN_ 
statement is described in detail in 
Sec. 5.3) 

#502 [-#2 + SQRT[#100]] I [2 * #1]; 

(First root calculated and stored 
in the permanent common vari­
able #502) 

www.EngineeringBooksPdf.com



Branches and Loops 91 

# 5 03 [- #2 - SQRT [ #10 0 ]] I [2 * #1 ]; 

GOTO 20; 

N1 0 # 502 = - #2 I [2 * #1] ; 

#503 = # 502 ; 

N20 M30; 

(Second root calculated and stored 
in another permanent common 
variable #503) 
(Branching to N20) 

(First root calculated, when the 
determinant is 0) 

(The two roots are equal) 

Recall that every macro calculation typically involves an error 
of 10-s. So, even if the determinant is actually 0, it may not come out to 
be exactly 0. It is because of this reason that the absolute value of the 
determinant is being checked against a small value, in this program. 

Note that, even if the determinant is negative, generating an 
alarm, the permanent common variables #502 and #503 would still 
have old values (if any) stored in them. If this is likely to cause a con­
fusion, set #502 and #503 to null (#0), if the determinant comes out to 
be negative. In fact, as already stated, a good programming practice 
would be to unconditionally set these variables to null in the very 
beginning of the program. This applies to all programs which use 
permanent common variables, without needing their old values. 

For additional practice, the reader may try to develop programs 
for finding 

• The largest and the smallest number in a given set of data 

• The sum of a finite series of the type I,~ (an expression in terms 
of index i) 

• The sum of an infinite but convergent series (the calculation 
would need to be terminated when a series term is found to 
be very small, say, less than 0.000001) 

• The calculation of factorial of a given number, etc. 

Wherever possible, recurrence relation should be used for compu­
tational efficiency. For example, the factorial of a given number can be 
defined in terms of the factorial of its preceding number: i! = (i -1)! x i. 
Such a technique is especially advantageous in series summation. An 
example is given below: 

x3 xs x7 x2n-1 
sum= x --+--- +·. ·(-1)"-1-,----.....,.-

3! 5! 7! (2n-1)! 

An inspection indicates that 

2i- 1 

ith term = (-1)i-1 (~- 1)! 
. . x 2i+ l 

(1+ 1)th term= (- 1)' (2i + 1)! and 
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So, the (i + l)th term can be expressed in terms of ith term in the fol­
lowing manner: 

2 

(i+l)thterm= (-1)(2i:l) 2i xithterm 

The flowchart based on this recurrence relation is given in Fig. 5.5. 
The input data are given values for x and the number of terms (n) in the 
series. The flowchart is valid for n ~ 2. It is left as an exercise for the 
reader to write a program for finding the sum of this series. 

Several of the given and the suggested programs are for the sole 
purpose of explaining the use of conditional statements in a macro, 
apart from describing the proper methodology for developing a 
macro program (in practice, no CNC machine may ever require the 
use of some of these programs). These programs were selected mainly 
because every engineering graduate writes such programs in some 
programming course. And, when the programs are familiar, one only 
has to see how these can be converted into the macro language. This 
makes learning a new language easy. 

These programs also indicate that the macro-programming lan­
guage can be used for doing complex calculations. In fact, the discus­
sion that follows will show that a macro program can do much more 
than what is described here. So far, we have had only an introduction 
to this language. 

F IGURE 5.5 
Flowchart of an 
algorithm for the 
sum of a series. 

i = 1 
term= x 
sum= x 

term =-term * (x * x)/((2 • i + 1) * 2 * i) 
sum = sum + term 
i=i+1 

yes 
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5.3 Conditional Execution of a Single Macro Statement 
Such a statement (IF _THEN_) has already been used in program 
number 8003 (it is left as an exercise for the reader to think how the 
program can be developed without using this statement). Here, it is 
formally described, in detail. 

A specified macro statement may or may not be executed depend­
ing on whether a specified condition is satisfied or not. The format is 

IF [<a condi tional expression>] THEN <a macro statement> ; 

The conditional expression may even be a complex combination of 
several independent conditions. 

The IF _THEN_ format has the following limitations: 

• Only a single macro statement can be specified. 

• An NC statement is not allowed. 

Examples: 
IF [#1 LT #2] THEN #3 3 ; 

IF [#1 LT #2 ] #3 = 3; 
IF [#1 LT #2 ] THEN M30; 

IF [#1 LT #2] THEN [#3 = 3 ; 

(If the condition is TRUE, a value of 3 is 
assigned to the variable #3. A FALSE con­
dition leaves the previous value stored in 
#3 unchanged) 
(Illegal command. THEN must be there) 
(Illegal command because an NC state­
ment has been specified) 
#4 = 4]; 

(Illegal command because more than one 
macro statements have been specified. In 
fact, it is not possible to have this command 
displayed in the manner shown. The first 
semicolon changes the line which breaks 
the statement into two separate blocks, 
making it completely meaningless) 

If more than one macro statements and/ or NC statements are desired 
to be executed if a specified condition is TRUE (e.g., if [ #1 LT #2] is TRUE), 
this can be done in the following manner (where the statements between 
the IF _GOTO_ and N100 blocks are executed only if #1 is less than #2): 

IF [#1 GE #2 ] GOTO 100; 

<macro statement -1> 

<macro statement -2> 

<macro statement -n> 

<NC statement -1> 

<NC statement - 2> 
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<NC statemen t n > 

Nl OO; 

<r emaining par t o f t h e p r ogram> 

Recall that an isolated EOB symbol(;) in a block, with or with­
out a sequence number (such as NlOO; or simply ;), is treated as a 
blank NC statement which does not do anything, but has all the 
properties of an NC statement. For example, in the single-block 
mode, the execution would halt here, and wait for the CYCLE 
START button to be pressed again for resuming the execution. This 
can also be used to prevent prereading of macro statements, which 
may not be desirable in certain cases. This issue is discussed in 
more detail in Sec. 7.6. 

Since GOTO n is a macro statement, it is also permissible to 
command 

I F [<a cond itional expr ess i on > ] THEN GOTO n ; 

which is equivalent to 

I F [<a cond itional expression> ] GOTO n ; 

5.4 Execution in a Loop 
It is possible to execute certain lines of a program repeatedly (i.e., in a 
loop) so long as a specified condition remains satisfied. This has, in 
fact, a!ready been done in several of the programs discussed so far. 
The conditional branching, IF _GOTO_, was used for this purpose. 
However, the use of GOTO (especially unconditional GOTO) is gen­
erally not recommended as it makes the program less readable, mak­
ing its interpretation a bit difficult. A better way to construct a loop is 
to use the WHILE statement. And, this is the only alternate way avail­
able in Custom Macro B, for executing in a loop. 

Another advantage of creating a loop using the WHILE statement 
is that its processing takes less time compared to the processing of the 
GOTO statement. This might affect the speed of program execution if 
the number of times the loop is required to be executed is too large. 
The syntax of the WHILE statement is 

WHI LE [ <a conditional expression > ] DO n ; 

<program b l ocks within the l oop> 

END n ; 

where n can be 1, 2, or 3. 
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If the specified condition is satisfied (i.e., if the conditional expres­
sion evaluates to TRUE), the program blocks between DO and END 
are executed. Thereafter, the condition is checked again, and if the 
condition is still satisfied, the loop is reexecuted. As long as the condi­
tion remains satisfied (which is tested in the beginning of each loop), 
the loop is repeatedly executed. 

The program blocks inside the loop are so designed that their pro­
cessing affects the specified condition, such that, after a few executions 
of the loop, the condition becomes FALSE. Thereafter, the program 
execution proceeds to the block next to END, after fully completing the 
execution of the loop which changed the condition from TRUE to 
FALSE. Note that the condition is checked before executing a new loop; 
it is not checked while executing a loop. The flowchart for the WHILE 
statement is given in Fig. 5.6. 

Though only 1, 2, and 3 can be used as identification numbers (n), 
these can be used any number of times in a program: 

WHILE [<conditional express i on 1>) DO 1; 

(The identification number is 1) 

<program blocks within the first loop> 

END 1 ; 

WHILE [<condit i onal expression 2>) DO 1; 

(Same identification number permitted) 

FIGURE 5.6 
Flowchart for a 
WHILE statement. 

execution of multiple 
program blocks between 
DO and END 

not satisfied 
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<program blocks within the second loop> 

END 1; 

In fact, the same identification number (say, 1) can be used every­
where in the program (as done in the previous example), except in 
nesting where 1, 2, and 3 correspond to the three levels of nested 
WHILE statements (up to a maximum of three levels of nesting is 
permitted): 

WHILE [<condition 1> DO 1 ; 

WHILE [<condition 2>] DO 2; 

level 2 level 1 

WHILE [<condition 3>] DO 3; l 
level 3 

END 3; 

END 2; 

END 1; 

The DO_END_ ranges cannot overlap in nesting, as it makes the 
statement illogical and meaningless: 

WHILE [<condition 1>] DO 1; 

WHILE [<condition 2>] DO 2; l 
END 1; 

END 2; 

overlapping ranges, which 
makes the nesting illegal 

It is permitted to use any macro or NC statement, including IF_ 
THEN_, IF _GOTO_ and GOTO_, inside a loop (i.e., inside the DO_ 
END_ range): 

WHILE [<condition 1>] DO 1; 
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N10 

END 1; 
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(Permitted to use GOTO inside a 
loop) 

It is also permitted to jump out of the loop using a GOTO 
statement: 

WHILE (<condition 1>] DO 1; 

IF (<condition 2>] GOTO 10; 

END 1; 

N10 

(Permitted to jump outside the 
loop) 

However, jumping inside a loop (from outside) is not permitted: 

IF (<condition 1>] GOTO 10; (Illegal jump inside a loop) 

WHILE (<condition 2>] DO 1; 

N10 

END 1; 

For illustrating the use of the WHILE statement, the same prob­
lems would be considered to bring out the difference from the loops 
created using the conditional GOTO statement. 

As already stated, the program coding should be done only after 
preparing a flowchart. The flowchart for the WHILE statement would 
be slightly different because the specified condition is checked in the 
beginning of the loop. 

The flowchart for the summation problem (1 + 2 + 3 + ... + 10) is 
given in Fig. 5.7. Program number 8004 is based on this flowchart. 
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number= 1 
sum= number 
max number = 1 0 execution trace 

initial values of number and sum 
values after executing I loop 
values after executing II loop 
values after executing Ill loop 
values after executing IV loop 
values after executing V loop 
values after executing VI loop 
values after executing VII loop 
values after executing VIII loop 
values after executing IX loop 

final sum 

number sum 
1 1 
2 3 
3 6 
4 10 
5 15 
6 21 
7 28 
8 36 
9 45 
10 55 

55 

FtGURE 5.7 Flowchart and execution trace of a summation algorithm for a WHILE 
statement. 

08004 (SUMMATION OF NUMBERS USING WHILE) ; 

(#1 @ NUMBER); 

(#2 @ SUM); 

(#3 @ MAX NUMBER); 

(#504 @ FINAL SUM); 

#1 

#2 

#3 

1; 

#1; 

10; 

WHILE [#1 LT #3] DO 1; 

#1 = #1 + 1; 

#2 = #2 + #1; 

END 1; 

#504 #2; 

M30; 

(Up to which summation is desired) 

(Initial value of NUMBER) 

(Initial value of SUM) 

(Summation from 1 to 10 is desired) 

(The loop starts here. It is executed if #1 
is less than #3. If not, the loop termi­
nates, and the execution jumps to the 
block after END 1) 

(NUMBER incremented by 1) 

(SUM calculated) 
(The end of the loop. The execution 
jumps to the start of the loop to check if 
#1 is still less than #3) 
(The final value of the SUM stored in 
the permanent common variable #504) 
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variable referenced by 
'----I counter = null 

counter = counter + 1 

execution trace 
counter #500 

initial values of counter and variables 500 old 
values after executing I loop 501 null 
values after executing II loop 502 null 
values after executing Ill loop 503 null 

... ... ... 

... .. . ... 
values after executing 499th loop 999 null 
values after executing SOOth loop 1000 null 

#501 #502 ... #999 
old old ... old 
old old ... old 
null old ... old 
null null ... old 
... ... ... . .. 
... ... . .. . .. 

null null ... old 
null null ... null 

F IGURE 5.8 Flowchart and execution trace of an algorithm for clearing all 
permanent common variables using a WHILE statement . 

The flowchart for clearing all permanent common variables using 
a WHILE statement is given in Fig. 5.8. Program number 8005 is based 
on this flowchart. The execution of this program takes about 5 seconds 
which is nearly half of the time taken by program number 8001 which 
used a GOTO statement to construct the loop. 

08005 (CLEARING COMM VARS USING WHILE) ; 

( #1 @ COUNTER) ; 

# 1 = 50 0; (Initial value of COUNTER) 
WHILE [ # 1 LE 9 9 9] DO# 1 ; (The loop starts here. It is executed if #1 is 

less than or equal to 999. If not, the loop 
terminates, and the execution jumps to 
the block after END 1) 

# [ # 1] = # 0 ; (The variable number, referenced by 
COUNTER, cleared to null) 

# 1 = # 1 + 1 ; (COUNTER incremented by 1, for select­
ing the next variable) 

99 : 
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END#l; 

M30; 

(The end of the loop. The execution jumps 
to the start of the loop to check if #1 is still 
less than or equal to 999) 

The flowchart for calculation of standard deviation using the 
WHILE statement is given in Fig. 5.9 (the data-entry step, in the 
beginning of the algorithm, has not been shown in the flowchart) . 
Program number 8006 is the corresponding program. Note that this 
algorithm uses two loops. 

number = 10 
counter= 1 
sum = value stored in the first variable 

no 

counter = counter + 1 
sum = sum + value stored in the variable referenced by counter 

counter= 1 
sum of square deviation =square of (average - value stored in the first variable) 

no 

counter = counter + 1 
sum of square deviation = sum of square deviation + square of (average - value 

stored in the variable referenced by counter) 

L-----1 mean square deviation = sum of square deviation/( number - 1) 
standard deviation = square root of mean square deviation 

FIGURE 5.9 Flowchart of an algorithm for calculating the sample standard deviation 
using a WHILE statement. 
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08006 (STD DEV CALCULATION USING WHILE) ; 
(#1 THROUGH #10 @ DATA); 
(STORE DESIRED VALUES IN #1 . .. #10); 
(#100 @ NUMBER OF GIVEN DATA); 
(SET #100 TO THE NUMBER OF DATA); 
(#101 @ COUNTER); 
(#102 @ SUM OF GIVEN DATA) ; 
(#103 @ AVERAGE OF GIVEN DATA); 
(#104 @ SUM OF SQUARE DEVIATION); 
(#105 @ MEAN SQUARE DEVIATION); 
(#505@ STANDARD DEVIATION); 

#1 1· 
#2 2 · 
#3 3; 
#4 4· 
#5 5; 
#6 6. 

#7 7; 
#8 8 ; 
#9 9; 
#10 = 10; 
#100 10 ; 
#101 = 1; 
#102 = #1; 

WHILE [#101 LT #100] DO 1; 

#101 = #101 + 1; 
#102 = #102 + #[#101]; 
END 1; 

#103 #102 I #100 ; 
#101 1· 

#104 [#103 - #1] * [#103 

WHILE [#101 LT #100] DO 1 ; 

(First data) 
(Second data) 
(Third data) 
(Fourth data) 
(Fifth data) 
(Sixth data) 
(Seventh data) 
(Eighth data) 
(Ninth data) 
(Tenth data) 
(NUMBER of data) 
(Initial value of COUNTER) 
(Initial SUM set to the first data) 
(The first loop starts here. It ends at 
the END 1 block. Note that END 1 
appears twice in this program 
because the same identification num­
ber, 1, has been used for both the 
loops. The current loop is executed if 
#101 is less than #100. If not, the loop 
terminates, and the execution jumps 
after the END 1 block of this loop) 
(COUNTER incremented by 1) 
(Next data added to SUM) 
(The end of the first loop. The execu­
tion jumps to the start of the loop to 
check if #101 is still less than #100) 
(AVERAGE calculated) 
(COUNTER initialized to 1) 

- #1]; 

(Initial SUM OF SQUARE DEVIA­
TION set to the square deviation for 
the first data) 
(The second loop starts here. It is 
executed if #101 is less than #100. If 
not, the loop terminates, and the exe­
cution jumps to the block after the 
END 1 block of this loop, that is, 
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jumps after the second END 1 of this 
program) 

#101 #101 + 1; (COUNTER incremented by 1) 
#104 #104 + [#103 - # [#101]] * [#103 - # [#101]] ; 

END 1; 

(Square deviation for the next data 
added to SUM OF SQUARE 
DEVIATION) 
(The end of the second loop. The exe­
cution jumps to the start of the loop 
to check if #101 is still less than #100) 

#105 #104 I [#100 - 1]; (MEAN SQUARE DEVIATION 
calculated) 

#505 SQRT[#105]; 

M30; 

(STANDARD DEVIATION calcu­
lated and stored in the permanent 
common variable #505) 

The series summation flowchart shown in Fig. 5.5 was designed 
to be used with the conditional GOTO statement. The same algo­
rithm, if desired to be implemented with the WHILE statement, 
would have a flowchart as shown in Fig. 5.10. The reader should try to 
write a program, based on this flowchart, which is being left as an 

FIGURE 5.10 
Flowchart of an 
algorithm for the 
sum of a series 
using a WHILE 
statement. 

no 

i = 1 
term= x 
sum= x 

term =-term • (x • x)/((2 • i + 1) • 2 • i) 
sum = sum + term 
i = i + 1 
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exercise. Just define variables for inputs x and n, as well as for coun­
ter i, term, and sum. Thereafter, program writing is simply a matter of 
copying the flowchart in terms of the defined variables. 

Though the WHILE statement is for the purpose of executing in a 
loop, it can also be used to execute certain blocks once if a specified 
condition is true: 

WHI LE [<a condit i ona l express i on>] DO l; 

GOTO 10; 

END 1· 

N10 .. . ; 

Recall that the IF_ THEN_ format can execute only one macro state­
ment if a specified condition is satisfied. An indirect method was sug­
gested for executing more than one statement. 

5.5 Arithmetic Operations on Macro Variable Numbers 
As already discussed, macro variables cannot be defined using arbi­
trary combinations of alphanumeric characters. These can only be 
defined in terms of certain variable numbers. This is a bit inconvenient 
because the programmer does not get any intuitive feeling of the 
assigned meanings of the different variables being used in a program. 

However, a unique feature of macro variables is that arithmetic 
operations are permitted on the variable numbers. This can be used 
advantageously in certain cases. For example, in PASCAL, one may 
store the marks in five subjects obtained by a student in five vari­
ables, say, MARKS1, MARKS2, MARKS3, MARKS4, and MARKS5. 
On the other hand, in a macro program, the marks may be stored in, 
say, #101, #102, #103, #104, and #105. While MARKS1, MARKS2, 
MARKS3, MARKS4, and MARKS5 are all independent of one another, 
#101, #102, #103, #104, and #105 follow a pattern. The variable num­
ber for a subject can be obtained by adding 1 to the variable number 
for the previous subject. This fact can be used while writing a pro­
gram for, say, calculating the aggregate marks. The flowchart of such 
an algorithm is given in Fig. 5.11, and the corresponding program 
number is 8007. The WHILE statement has been used for creating the 
loop in this program, as it is preferred over the conditional GOTO 
statement. The readers should, however, try to construct the loop 
using the IF _GOTO_ statement, as an exercise. 

08007 (AGGREGATE MARKS CALCULATION) ; 

(#1 @ COUNTER ); 

(#2 @ SUM); 
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<enter marks in #1 01 ... #1 05> 
counter = 0 
sum= 0 
total subjects = 5 execution trace 

(assumin the marks to be 50, 60, 70, 80, and 90) 
counter sum 

0 0 
values after executin 1 50 
values after executin 2 110 
values after executin 3 180 
values after executin 4 260 
values after executin 5 350 

final sum 350 

FIGURE 5 .11 Flowchart and execution trace of an algorithm for calculating 
aggregate marks. 

(#3 @ TOTAL SUBJECTS); 

(#506 @ FINAL SUM); 

#101 50; 

#102 60; 

#103 70; 

#104 80; 

#105 90; 
#1 0; 
#2 0; 

#3 5; 

WHILE [#1 LT #3] DO 1; 

#1 #1 + 1; 

#2 = #2 + #[100 + #1]; 

END 1; 

#506 #2; 

M30; 

(If the total number of subjects is differ­
ent from 5, define #3 accordingly) 

(Start of the loop) 

(COUNTER incremen ted by 1) 

(Marks obtained in the next subject 
added to SUM) 

(End of the loop) 

(FINAL SUM stored in the permanent 
common variable #506) 
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This, of course, is a trivial example; the marks in the five subjects 
can be added straightaway! However, if the number of data is too 
large (say, 100), such a program would be useful. Moreover, the objec­
tive here is to explain how arithmetic operations are done on vari­
ables numbers, and how the flowchart, involving a loop, in such a 
case is drawn. 

Such a feature of macro variables can also be used for manipulat­
ing certain system variables which follow a definite pattern. For 
example, there is a jump of 20 in the variable numbers for various 
work offset values for a particular axis (see each row of Table 5.2(a), 
which is a part of Table 3.12). Similarly, corresponding to some spe­
cific workpiece coordinate system, the variable number increments 
by 1 for the next axis (see each column of Table 5.2(a). The identified 
pattern can be described mathematically, in terms of number 5201, as 
shown in Table 5.2(b), which is a part of Table 5.2(a). So, if the axis 
and the workpiece coordinate system are specified, the correspond­
ing system variable number can be calculated. The multiplication 
factors (of 20) for external G54, G55, G56, G57, G58, and G59 work­
piece coordinate systems are 0, 1, 2, 3, 4, 5, and 6, respectively, and 
the addends are 0, 1, and 2 for X-, Y-, and Z-axis, respectively (3, 4, 5, 
etc. for the remaining axes, if available). So, for example, theY-axis 
offset value for the G56 coordinate system is stored in variable 
number 5201 + 20 x 3 + 1, i.e., in #5262. 

Axis External G54 GSS G56 G57 G58 I G59 

X #5201 #5221 #5241 I #5261 #5281 #5301 #5321 

y #5202 #5222 #5242 #5262 #5282 #5302 #5322 

z #5203 I #5223 #5243 #5263 #5283 #5303 #5323 

(a) 

Axis External G54 GSS G56 

X #[5201 + #[5201 + #[5201 + #[5201 + 
20 X 0 + 0) 20 X 1 + 0) 20 X 2 + 0) 20 X 3 + 0) 

y #[5201 + #[5201 + #[5201 + #[5201 + 
20 X 0 + 1) 20 X 1 + 1) 20 X 2 + 1) 20 X 3 + 1) 

z #[5201 + #[5201 + #[5201 + #[5201 + 
20 X 0 + 2] 20 X 1 + 2) 20 X 2 + 2) 20 X 3 + 2) 

(b) 

TABLE 5.2 Pattern in System Variable Numbers for Various Work Offset Values on 
a Milling Machine 

105 
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Methods of Zero Shift 
We will now consider a simple example to see how such system vari­
ables can be identified and manipulated for a desired effect through 
a program. Let us say, the requirement is to place the origin of the 
currently active (or some other) workpiece coordinate system (among 
G54-G59 and optionally available 48 additional coordinate systems 
G54.1 Pl- P48) at the current XY-position of the tool, on a milling 
machine. This is known as zero shift or datum shift. Recall that the ori­
gin of the workpiece coordinate system (G54, GSS, etc.) is also referred 
to as the workpiece zero point or the program zero point or the component 
zero point, and at any time, any one of the six standard and 48 addi­
tional workpiece coordinate systems can be selected to be the active 
coordinate system. A program is executed in the currently active 
coordinate system (CNC interprets the coordinate values used in a 
program in the currently active coordinate system). 

Zero shift can be very simply done just by commanding G90 G92 
XO YO, which is obviously the simplest method. The corresponding 
command on a lathe is GSO XO ZO. Zero shift for single axis is also pos­
sible. For example, G90 G92 ZO (GSO ZO on a lathe) shifts zero only for 
the Z-axis. However, a limitation of using G92 or GSO is that the shift 
remains valid only for the current machining session. Once the 
machine is switched off and again switched on, the information fed to 
it through G92 or GSO in the previous session is lost, and the machine 
starts using the original zero setting. Moreover, zero shift, using this 
method, can only be done for the currently active coordinate system. 

On the other hand, if zero shift is done by manipulating the val­
ues stored in the system variables for the relevant work offset dis­
tances, the shifted origin remains fixed at the new position perma­
nently, until the offset values are changed again (using any method). 
In addition, this method works for all coordinate systems, even if 
these are not currently active. Of course, if the system variables, cor­
responding to the offset distances of a coordinate system which is not 
currently active, are manipulated, its effect will be seen only after this 
coordinate system becomes active. 

The system variables for various offset values are read/write type. 
So, if the values stored in them are changed, the corresponding offset 
distances automatically change. Conversely, if the offset distances are 
changed, the corresponding system variables automatically get rede­
fined (i.e., store new values). Note that the terms "offset distance," "off­
set value," and even "offset" are usually used synonymously. So, X­
offset value, X-offset distance, and X-offset all mean the same thing. 

Further discussion on this topic necessitates a clear understanding 
of the way the control defines and uses the various coordinate systems. 
Refer to Fig. 5.12 for the discussion that follows. The X- andY-offset dis­
tances are the X- andY-component (with sign) of the corresponding off­
set vector shown in this figure. For a lathe, replace X by Z, andY by X. 
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FIGURE 5.12 Coordinate systems and offsets on a milling machine. 

Machine Coordinate System 
On any machine, the origin of the machine coordinate system (MCS), 
which is also called the machine zero point, is placed at a desired loca­
tion by a parameter setting. This is done by the MTB, and there is no 
need for the end-user to change it. In fact, it must not be changed 
because several machine settings are done in MCS. 

For example, the 1300 series parameters (refer to the Parameter 
Manual for details) are used for defining the software overtravellimits 
for the tool movement. If, due to a programming error or otherwise, 
the tool is required to enter the prohibited zone, it will automatically 
stop at the boundary, with an alarm. Such a software limit is desirable 
because of safety considerations. For example, the tool should never hit 
the chuck or the tailstock on a lathe. The software limits do not allow 
the tool to enter a defined dangerous zone. These limits are specified in 
certain parameters, as coordinate values in MCS. This means that any 
change in the position of the MCS would automatically redefine the 
prohibited zone, which is obviously not desirable. So, one can say that 
the MCS is fixed for a given machine. 

The MCS, however, is not convenient for running part programs; 
in fact, the control does not allow program execution in MCS. There 
are other coordinate systems for this purpose. 

External Workpiece Coordinate System 
The external workpiece coordinate system, which is usually referred 
to simply as the external coordinate system, is defined relative to 
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MCS, as shown in Fig. 5.12. The X- andY-coordinates (in MCS) of 
the origin of this coordinate system are called the X- andY-external 
offsets. These values are stored in system variables #5201 and #5202, 
respectively, on a milling machine. All other workpiece coordinate 
systems (G54, G55, etc.) are defined with respect to this coordinate 
system, which is its only purpose. It cannot be used for program 
execution. A program is always executed in the chosen workpiece 
coordinate system (WCS). If no choice is made, G54 is used which 
is the default WCS. 

The external workpiece coordinate system is used for uni­
formly shifting the origins of all the other workpiece coordinate 
systems. Such a situation arises when the same fixture, which holds 
a number of workpieces, all requiring to be machined in different 
coordinate systems (G54, G55, etc.), is placed at a different location 
on the machine table. In such cases, instead of redefining G54, G55, 
etc. independently, only the external coordinate system is redefined 
to have the same effect. Such a situation on a lathe arises when the 
original chuck, which was used for offset setting, is replaced by 
another chuck with a different holding position along the Z-axis. If 
such a requirement is not there, there is no need to use this coordi­
nate system. In such cases, all the external offset values are kept 
zero, which means that this coordinate system coincides with the 
MCS, and G54, G55, etc. are, effectively, directly defined with 
respect to the MCS. 

G54-G59, G54.1 P1-P48 Workpiece Coordinate Systems 
Six standard and 48 optional (which are activated, on milling machines 
only, on extra payment) workpiece coordinate systems are available. 
These are all defined with respect to the external workpiece coordi­
nate system, as shown in Fig. 5.12. The various offset distances are 
stored in different system variables, as shown in Tables 3.12 and 5.2 
(which is a subset of Table 3.12). 

These coordinate systems are used for machining purpose (only), 
and placed at desired locations (i.e., at the desired datum of the work­
piece) by specifying the various offset distances. The procedure of 
tool offset setting actually measures these offset distances only. 

Only one of these coordinate systems remains active at a time. 
The coordinates used in the program are interpreted by the control, 
in the active coordinate system (say, in the G54 coordinate system, 
though the control internally converts all coordinates in the machine 
coordinate system). If there is only a single workpiece to be machined all 
the time, there is no need to have so many workpiece coordinate sys­
tems. However, in a practical situation, several workpieces need to 
be machined, all having data at different locations. In such cases, 
independent coordinate systems, corresponding to every datum, 
are defined, and the appropriate coordinate system is made active 
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whenever required. Since G54 is the default coordinate system, when­
ever the machine is switched on, or the control is the reset (by press­
ing RESET key, or by executing M02 or M30), G54 becomes active. 

Zero Shift by Manipulating Offset Distances 
By now, it should be clear that the control places the origins of differ­
ent WCSs at the user-specified distances from the origin of the MCS. 
This distance is the vector sum of the external offset vector and the 
corresponding work offset vector. So, for example, if the X-external 
offset is 10, and the X-offset for G54 is 200, then the control will place 
the origin of the G54 coordinate system at a distance of 210, in the 
positive X-direction, from the origin of the MCS. On the other hand, 
if the desired distance of G54 from the MCS is, say, 250, and the exter­
nal offset is not to be changed, then the X-offset of G54 will have to be 
changed to 240. Therefore, as an example of zero shift, if the current 
X-position of the tool is to be made the origin of G54 (which may or 
may not be the currently active coordinate system), the sum of the 
X-external offset and the X-offset of G54 will have to be made equal 
to the X-distance of the current position of the tool from the MCS 
(which will be equal to the X-coordinate of the current tool position in 
MCS). Mathematically, 

X-extemal offset+ X-offset of G54 = X-coordinate of the 
current tool position, in MCS 

Hence, if the external offset value is not to be changed, the X-offset of 
G54 will have to be made equal to the X-coordinate in MCS minus the 
X-external offset, that is, 

X-offset of G54 = X-coordinate of the current tool position, 
in MCS- X-extemal offset 

Similarly, for zero shift to the current Y-position of the tool, 

Y-offset of G54 = Y-coordinate of the current tool position, 
in MCS- Y-extemal offset 

This is the principle we are going to make use of for zero shift, that is, 
for shifting the origin of the desired (active or otherwise) WCS to the 
current tool position. 

Zero Shift through System Variables 
For placing the origin of the current WCS (though the method is valid 
also for a coordinate system which is not currently active) at the cur­
rent tool position, let us assume, for the sake of illustration, that the 
currently active coordinate system is G56, and the current XY-position 
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of the tool is to be made the new datum on a milling machine. This 
can be done by redefining X- andY-offset values of G56, using the 
following formulae: 

X-offset of G56 = X-coordinate of the current tool position, 
in MCS- X-external offset 

Y-offset of G56 = Y-coordinate of the current tool position, 
in MCS- Y-external offset 

In terms of system variables, these translate to (see Table 3.11 and 
Table 3.12/Table 5.2) 

#5 2 61 

#5262 

# 502 1 

#5022 

#520 1; 

#5202 ; 

Note that the RHS of the formulae given above would be the 
same for all the WCSs. For example, these formulae will take the fol­
lowing form for XY-datum shift for G59: 

#5321 #5021 #5201; 

#5322 = #5022 - #5202; 

Work Offset Display on a Milling Machine 
A typical work offset screen on a milling machine, when the active 
coordinate system is G56, is shown in Table 5.3. The components of 
the external offset vector and the various work offset vectors, along 
different axes, are the corresponding offset values, which are dis­
played on this screen. The X-, Y-, and Z-offset values corresponding 

WORK COORDINATES 

(G56) 

NO. DATA NO. DATA 

X 0 .000 X 

00 y 0 .000 02 I y 

(EXT) z 0.000 (G55) z 
---------

X X 
·-----··--··- ---·----~-- --

01 y 03 y 
r----·------- -·---·- ·-·---- ---· ·-··--··-··---···----

(G54) z (G56) z 

TABLE 5.3 A Typical Work Offset Screen on a Milling Machine 
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to G54, G55, and G56 have been left blank in this table. These will 
actually display some values. The external offset values will be all 
zero, as displayed, if the external coordinate system is not being used, 
which is usually the case. As already explained, the purpose of using 
the external coordinate system is to shift the datum of all the other 
workpiece coordinate systems, G54 to G59 as well as G54.1 P1-P48, 
by the same specified amount. 

The work offset screen can be displayed by pressing the OFS/SET 
key, followed by the WORK soft key. Note the display of G56 at the top 
left corner of this screen, which indicates that G56 is currently active. 

System Variables for Various Work Offset Values 
The system variable numbers, corresponding to various offset values, 
are shown in Table 5.4, which is a deliberate repetition of Table 5.2(a), 
in a different form, for the sake of better clarity, as one can directly 
correlate the system variables with what one sees on the screen. The 
variable numbers corresponding to G57, G58, and G59, on a milling 
machine, are shown in Table 5.5. 

Note that the variable numbers corresponding to various offset 
values do not change when the current coordinate system changes. 
So, for example, #5261 always contains the X-axis offset value for 
G56, irrespective of which coordinate system is currently active. Of 
course, the machine uses the value stored in #5261 only when G56 
becomes the current coordinate system. 

Zero Shift through a Program 
For zero shift, the offset values corresponding to the currently active 
workpiece coordinate system will need to be edited (editing is possi­
ble for any WCS, but we are considering the current WCS in our 

WORK COORDINATES 

(G56) 

NO. DATA NO. DATA 

X #5201 X #5241 

00 y #5202 02 y #5242 
----

(EXT) z #5203 (G55) z #5243 

·-·--·-

X #5221 X #5261 

01 y #5222 03 y #5262 

(G54) z #5223 (G56) z #5263 

TABLE 5.4 System Variables Corresponding to External , G54, G55, and 
G56 Work Offset Values on a Milling Machine 
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WORK COORDINATES 

(G56) 

NO. DATA NO. DATA 

X #5281 X #5321 

04 y #5282 06 y #5322 

(G57 ) z #5283 (G59) z #5323 

X #5301 

05 y #5302 

(G58) z #5303 

TABLE 5.5 System Variables Corresponding to G57, G58 , and G59 Work 
Offset Values on a Milling Machine 

example). This can be done manually also, after highlighting it by 
arrow keys, by typing the new value, and pressing the INPUT soft 
key or the INPUT key on the MDI panel. When this is desired to be 
done through a program, one needs to have the following informa­
tion, inside the program: 

• The currently active workpiece coordinate system 

• The system variable numbers, corresponding to the work off­
set values of this coordinate system 

• The coordinates of the current tool position in MCS 

Referring to Table 3.10(b), the system variable #4014 stores the 
number of the current workpiece coordinate system (which would be 
56 in our example, since G56 is assumed to be the current coordinate 
system). On the other hand, the system variables #5021 and #5022 
store the current X- andY-coordinates (on a milling machine), respec­
tively, in MCS (see Table 3.11). Program number 8008, which is based 
on this information, shifts the origin of the currently active coordi­
nate system to the current tool position on a milling machine. 

08008 (CURR WCS DATUM SHIFT ON MILL M/ C) ; 

#1 = #4014; (The current coordinate system, in 

#1 #1 - 53 ; 

our example, is G56. So, 56 would 
get stored in #1) 
(This would store 1 in #1, if the cur­
rent coordinate system is G54. Simi-
larly, corresponding to GSS, G56, 
G57, G58, and G59, the stored val­
ues would be 2, 3, 4, 5, and 6, respec­
tively. In our example, #1 would 
store 3) 
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#1 #1 + 5201; 
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(This calculates the multiplication 
factor, as defined in Table 5.2(b), for 
the current coordinate system. In 
our example, #1 would store 60) 

(#1 would store 5221, 5241, 5261, 
5281, 5301, and 5321, corresponding 
to G54, G55, G56, G57, G58, and 
G59, respectively, depending on 
which one is the current coordinate 
system. The stored value would be 
the variable number corresponding 
to the X-axis work offset value for 
the current coordinate system, as 
shown in Table 3.12 / Table 5.2(a). In 

#[#1] #50 21 - #5 201; 

our example, #1 would store 5261) 
(#5021 contains the tool's current X­
coordinate in MCS, and #5201 con-

#[#1 + 1] 

M30; 

tains the X-external offset. As already 
explained, when the difference in 
their values is stored in the system 
variable corresponding to the X-offset 
of a WCS, the current position of the 
tool becomes the new X-datum of 
that WCS, that is, the current tool 
position gets redefined as XO in that 
WCS. In our example, #5261 would 
get appropriately modified, which 
would shift the X-datum for G56 to 
the current X-position of the tool) 

#5 0 2 2 - #5 2 0 2 ; (Shifts datum for the Y-axis to the 
current Y-position of the tool. In our 
example, #5262 would get appropri­
ately modified, which would shift 
theY-datum of G56) 

Note that this program has been written without making a flow­
chart. A flowchart is not needed for straightforward cases such as 
this. The algorithm in this program is very simple: 

1. Identify the current workpiece coordinate system. 

2. Identify the system variables for X- andY-work offset values 
corresponding to this coordinate system. 

3. Redefine the identified system variables, using the given 
formulae. 

However, even if one decides to write a program without making 
a flowchart, at least the algorithm must be noted down in black and 
white, before attempting to write the program. This would be useful 
for future reference also, as a quick intuitive interpretation of a macro 
program is generally not possible due to its abstract look. 
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Though the program given above is meant to be used on a milling 
machine, it would work on a lathe in pretty much the same manner. The 
only difference is that the second axis on a lathe is the Z-axis. So, the 
program would be exactly same. Just replace Y by Z in the description 
for this program. However, in a practical application on a lathe, normally 
only Z-datum shift might be needed. If so, delete #[#1] = #5021 - #5201 
block of the program. Program number 8009 is the modified program. 

08009 (CURR WCS Z-DATUM SHIFT ON LATHE); 

#1 #4014; 

#1 #1 - 53; 

#1 #1 * 20 ; 
#1 #1 + 5201 ; 

# [#1 + 1 ] = #5022- #5202; 

M30; 

Both the programs are designed to identify and shift the datum of 
the current WCS. If the requirement is to shift the datum of, say, G56 
coordinate system, irrespective of which WCS is current, this is a sim­
pler task, which can be done by program numbers 8010 and 8011. Of 
course, the effect of datum shift will be visible only after G56 becomes 
the current WCS. 

08010 (G56 DATUM SHIFT ON MILL M/C) ; 
#5261 #50 21 - #5201; 
#5262 = #5 022 - #5202; 
M30; 

0801 1 (G56 Z-DATUM SHIFT ON LATHE) ; 
#5262 = #5022 - #5202 ; 
M30; 

The given program may appear trivial (as one can shift the datum 
manually, using the usual offset setting procedure), but it can be very 
effectively used. For example, if the workpiece on a lathe is changed 
to a different one, having different dimensions, the datum setting for 
Z would need to be repeated (X-datum would remain the same, 
because the XO position does not depend on the diameter of the work­
piece). If the machine operator is not fully aware of the offset setting 
procedure, he may simply be asked to first bring the tool manually 
(in JOG or HANDLE mode) to the desired ZO position, and then run 
program number 8009, without disturbing the position of the tool. 
This would place the Z-datum of the current WCS at the chosen loca­
tion. Naturally, this has to be done in the same workpiece coordinate 
system which the machining program uses. If it is, say, G56, one will 
have to first execute G56 in the MDI mode, before running program 
number 8009 in AUTO mode. And the RESET key must not be pressed 
in-between, otherwise, the default workpiece coordinate system, G54, 
will again become the active coordinate system! 
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At this stage, it is appropriate to point out a major difference in 
the way a program is run in MDI and AUTO modes. While these two 
modes are for different purposes: the MDI mode for 2-3 line pro­
grams which are not required to be saved, and the AUTO mode for 
running long programs stored in the memory of the CNC, this is not 
the only difference. When a program is run in the MDI mode, the 
system does not get reset automatically when the execution is over. 
If reset is desired, M02 or M30 will have to be explicitly programmed. 
On the other hand, even if M02 or M30 is missing at the end of the 
program being run in the AUTO mode, the system will get reset 
automatically when the execution ends (if parameter 3404#6 is set to 
0, the system enters the alarm state if M30 or M02 is missing at the 
end of the program. The default setting of this parameter is 1, which 
resets the system without any alarm, even if M30 or M02 is missing). 
This means that if a single-line program G56 is executed in the MDI 
mode, G56 will become the active WCS. On the other hand, if the 
same program is executed in the AUTO mode, the active WCS will 
change back to G54 at the end of the execution! Another difference, 
which is not relevant to our discussion, is that dynamic graphic display 
is not available in the MDI mode. 

The given program for datum shift, after some changes, can also 
be used for automatic tool offset setting, using touch probes, which 
will drastically reduce the set-up time. This aspect is discussed in 
detail in Chap. 11. 

5.6 Nested WHILE Statement 
The discussion in this chapter is complete, except that no example for a 
nested WHILE statement has been given, so far. A simple WHILE state­
ment is used when a number of similar operations are required to be 
done, as long as a specified condition remains satisfied. On the other 
hand, if each operation involves another set of similar operations, in a 
conditional loop, then a nested WHILE statement is used. Though the 
control allows one more level of nesting, it is practically never needed. 

The regular rectangular array of holes on a plate, shown in Fig. 5.13, 
can be very conveniently made using a canned cycle for drilling (say, 
G81), as all canned cycles can be repeated specified number of times. 
Program number 8012 is one such program for this job. It is assumed 
that the required depth of holes is 5 mm, and the top surface of the plate 
is the datum for the Z-axis. XY-datum is placed at the center of hole-1, 
as shown in the figure. 

Program number 8013 uses a two-level nested WHILE statement, 
based on the flowchart given in Fig. 5.14. In the nested WHILE state­
ment, the outer loop has been used to drill the required number of 
holes along the X-axis (i.e., on theY= 0 line), and the inner loop has been 
used to create a column of holes at each hole made by the outer loop. 
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FIGURE 5.13 A regular rectangular array of holes on a plate. 

08012 (HOLE ARRAY USING 

G21 G94 G90 G5 4 ; 

M06 T1; 

M03 S1 000; 

G43 H01 ; 

GOO XO YO Z100 ; 

G81 G99 Z- 5 R2 F30; 

G91 Y25 K2; 
X20 Y-50; 

Y25 K2 ; 

X20 Y- 50; 

Y25 K2; 

X20 Y- 50 ; 

Y25 K2; 

G80; 
M05; 

G90 GOO Z100 ; 

M30; 

A CANNED CYCLE ) ; 

(Initial settings) 
(Tool number 1 placed in the spindle) 
(Clockwise rpm 1000 starts) 
(Tool length compensation invoked) 
(Tool placed 100 mm above hole 1) 
(Hole 1 drilled. Retraction to Z = 2 mm) 
(Hole 2 and 3 drilled) 
(Hole 4 drilled) 
(Hole 5 and 6 drilled) 
(Hole 7 drilled) 
(Hole 8 and 9 drilled) 
(Hole 10 drilled) 
(Hole 11 and 12 drilled) 
(Canned cycle cancelled) 
(Spindle stops) 
(Tool retracted to Z = 100 mm) 
(Program end and control reset) 

08013 (HOLE ARRAY USING A NESTED WHILE) ; 

(#1@ COUNTER1, HOLE COUNTER ALONG X); 

(#2 @ COUNTER2, HOLE COUNTER ALONG Y); 
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<drill a hole> 
counter1 = counter1 + 1 
counter2 = 1 

<move 50 along Y> 
<drill a hole> 
counter2 = counter2 + 1 

<if counter1 s; 4, move 20 along X, and - 50 along Y> 

FIGURE 5.14 Flowchart for an algorithm to drill holes on the plate shown in 
Fig. 5 .13, using a nested WHILE statement. 

(#3 @ TOTAL NUMBER OF HOLES ALONG X); 

(#4 @ TOTAL NUMBER OF HOLES ALONG Y); 

(#5 @ DEPTH OF HOLE); 

(#6 @ PITCH ALONG X); 

(#7 @ PITCH ALONG Y); 

#3 4; (Four holes along the X-axis to be made) 
#4 3; (Three holes along theY-axis to be made) 
#5 5; (Depth of hole is 5 mrn) 
#6 20; (Pitch along a row is 20 mm) 
#7 25; (Pitch along a column is 25 mrn) 

G21 G94 G90 G54; (Initial settings) 
M06 Tl; (Tool number 1 placed in the spindle) 
M03 SlOOO; (Clockwise rpm 1000 starts) 
G43 HOl; (Tool length compensation invoked) 
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GOO XO YO Z100; 

#1 = 1 ; 

(Tool placed 100 mm above hole 1) 
(COUNTER1 initialized) 

WHILE [ #1 LE #3] DO 1; (The outer loop starts. It is executed once 
for every column of holes) 

G90 G81 G99 Z-[ABS[#5]] R2 F30; 

#1 #1 + 1; 

#2 1; 

(The use of ABS function makes the pro­
gram work even if a negative value is 
specified for the depth of the hole) 
(COUNTER1 incremented for drilling 
holes in the next column of holes) 
(COUNTER2 initialized) 

WHILE [#2 LE [#4- 1]] DO 2; 

G91 GOO Y#7; 

(The inner loop starts. It makes the 
required number of holes in each column 
of holes) 
(The tool shifted along the Y-axis to the 
center of the next hole in the current col­
umn of holes) 

G90 G81 G99 Z-[ABS[#5]] R2 F30; 

(Hole drilled) 
#2 = #2 + 1; 

END 2; 

IF [#1 GT #3] GOTO 10; 

G91 GOO X#6 Y-[#7 * [#4 

N10 ; 

END 1; 

GBO; 

M05; 

G90 GOO Z100; 

M30; 

(COUNTER2 incremented for counting 
and drilling the required number of holes 
in the current column of holes) 
(The inner loop ends) 
(Shift to the base of the next column of 
holes is not needed after the last column) 

- 1]]; 

(Tool shifted to the base of the next 
column of holes) 
(A blank NC statement) 
(The outer loop ends) 
(Canned cycle cancelled) 
(Spindle stops) 
(Tool retracted to Z = 100 mm) 
(Program end and control reset) 

While it may appear that the use of the WHILE statement in this 
case is too complex a method for too simple a problem, this method 
would definitely be preferable for a large number of holes. In fact, even 
if the number of holes increases, the program remains essentially the 
same; only the two variables (#3 and #4) for the number of holes along 
the X- andY-directions would need to be redefined, as per requirement. 
While the use of a loop, especially a nested loop, makes a simple pro­
gram complex, it does make a complex problem pretty simple! Anyway, 
the basic purpose here was to explain the use of the nested WHILE 
statement. Moreover, this happens to be our first program which 
involves machining, and which is also a common practical application. 
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The usefulness of a flowchart is more than apparent in this exam­
ple. Even though the flowchart looks simple, and its logic can be very 
easily verified, this is not so with the program. A program using 
macro features always looks much more complex than it actually is. 
So, without a flowchart, not only is it difficult to interpret the pro­
gram, logical errors also are likely to creep in while developing such 
a program. On the other hand, if the flowchart is ready and verified, 
the program coding is just mechanical work. 

Note that the given program is more general than the flowchart. 
This is another trick to make our life simple. First, make a simple 
flowchart for a special case, and write the program. Once the program 
is ready, it is easy to modify it for a general case. The given program 
would accept any values for the number of rows and columns of 
holes, depth of holes, pitch along rows, and pitch along columns. In 
fact, it is possible to introduce more complexity in the program. For 
example, depending on the specified depth of holes, the program can 
be made to automatically select an appropriate drilling cycle, for 
example, G81 for shallow holes, G73 for deep holes, and G83 for very 
deep holes. For this, one simply has to replace G81 by G#8, and define 
#8 (which can be 81, 73, or 83) on the basis of #5 (depth of hole), using 
conditional statements in the following manner: 

IF [#5 LE 5] THEN #8 = 81; (Shallowholes, depth ~ Smm) 

IF [[# 5 GT 5] AND [ # 5 LE 50]] THEN #8 = 73; 

IF [#5 GT 50] THEN #8 = 83; 

(Deep holes, 5 mm < depth :<> 

SOmm) 
(Very deep holes, depth > 50 mm) 

G90 G#8 G99 Z- [ABS [# 5 ] ] R2 F30; 

It is also possible to insert error traps in the program, to abort or 
temporarily halt the execution in case of out-of-range or illegal input 
data / calculated values: 

IF [# 5 GT 100] THEN #3000 = 1 (HOLE TOO DEEP) ; 

IF [[# 6 LE 5] OR [#7 LE 5]] THEN #3006 = 1 (PITCH TOO 
SMALL) ; 

Note that the first statement would generate an alarm condition, 
which will terminate further execution of the program. The second 
statement will only pause the execution, which can be restarted by 
pressing CYCLE START again, if the operator feels that the specified 
pitch is correct. In both cases, the messages in the brackets will be 
displayed on the alarm screen/ message screen. 

In general, modifying a program is much simpler than preparing 
the basic program. So, no matter how complex a requirement is, 
always start with a simplified case. Never worry about the ornamental 
aspects of a program in the beginning. In fact, once the basic program 
is ready and works well, the programmer himself gets encouraged to 
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FIGURE 5.15 A part requiring three levels of nested WHILE statement. 

make it better! So, as a rule of thumb, always start with a small and 
easily achievable target. 

Corning back to the nesting issue, the reader must have realized 
by now that had there been a pattern of holes instead of single hole 
at each location, the third level of nesting would have been required 
to make the hole-pattern at each location. Such an example is shown 
in Fig. 5.15. However, three levels of nesting make the logic too com­
plex to understand easily. So, not more than two levels should be 
used, unless it is absolutely necessary. This would practically always 
be possible, though the program would not be as compact and gen­
eral as with three levels of nesting. For example, it is possible to use 
just one level of nesting (actually, one level of nesting implies that 
there is no nesting at all) for the job of Fig. 5.15. Just write a macro for 
the polar pattern (which will require a single level of WHILE state­
ment, without any nesting), and call it 12 times after placing the tool 
at the centers of all the polar patterns one by one. Such a program 
will, of course, not be a general-purpose program. 
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CHAPTER 6 
Review of 

Subprograms 

It is necessary to understand why and how subprograms are used 
before trying to learn how to write macros. Though it is expected that 
the readers are well aware of subprograms, this chapter presents a 
brief review to refresh the memory. Even if one has used subprograms 
before, it is highly recommended that this chapter be read carefully, 
to eliminate the possibility of any missing link. 

What Is a Subprogram? 
As the name suggests, a subprogram is a part of a program that is 
stored in the memory of CNC like any other program with a specified 
program number. It is not a complete program, and is designed to be 
called by some other program, which can be a main program, another 
subprogram, or a macro. A subprogram by itself would generally be 
meaningless, unless used inside some other program. 

Why Is It Used? 
Sometimes a program contains repetitive program blocks that 
appear at several places without any change. For example, assume 
that a groove of certain geometry and 10-mm depth is to be cut on a 
flat plate on a milling machine. If the maximum permissible depth of 
cut is 2 mm, the groove would have to be milled in five passes, after 
placing the tool at successively increasing depths of 2, 4, 6, 8, and 
10 mm. This means that the program blocks, which define the 
geometry of the groove, would appear at five places in the program, 
making the program unnecessarily long. In such cases, a better way 
would be to store the repetitive blocks as a subprogram, and call it 
five times. 
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Subprograms versus Subroutines of a 
Conventional Computer Language 
The only similarity between the two is that both are called by other 
programs. Subprograms are not as flexible and versatile as subrou­
tines. The subroutines of a conventional computer language such as 
FORTRAN are more like macros that are described in Chap. 7. 
A subprogram call is simply a copy-and-paste operation of the called 
program into the calling program. Despite its limited scope, use of sub­
programs does simplify programming, and makes the program tidy. 

6.2 Subprogram Call 
The syntax of a subprogram call is 

M98 Pl234; 

which calls program 01234 once, as a subprogram. The program 
number of a subprogram can be any valid program number, that is, 
any program in the range 00001 (which is the same as 01, 001, or 
0001, that is, program number 1) to 09999: 

M98 PODOl; (Calls program 00001 once) 

M98 POOl; (Same as above) 

M98 POl; (Same as above) 
M98 Pl; (Same as above) 

M98 P9999; (Calls program 09999 once) 

The end of subprogram execution is indicated by M99 that 
returns the execution to the block following the calling block of the 
program that called the subprogram (i.e., to the block next to M98 
P1234, in the first example). M99 is similar to the RETURN statement 
of FORTRAN. 

As an example of using subprograms, consider the triangular 
groove of Fig. 6.1. Program 00001 would machine this groove by 
moving a slotdrill of 6-mm diameter along the center line of the 
groove. The repetitive blocks, which define the geometry of the 
groove, appear at five places in this program. These blocks have been 
highlighted for easy identification. 

The workpiece zero point has been chosen to lie at the lower left 
corner of the triangle, as shown in the figure . The Z-datum, for this 
program as well as for all the programs that appear in this book, is 
placed at the upper surface of the workpiece. 

00001; 

G21 G94; 

G54; 

G91 G28 XO YO ZO; 

(Program number 1) 
(Millimeter mode and feedrate in millimeter 
per minute) 
(Workpiece coordinate system) 

(Reference point return) 
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Slot (6 wide ,10 deep) 

'+--------------v (60, 0) 
60 

Note: The slot has been chosen to be milled in the direction of 
arrows shown on the center line of the slot. It is also possible to 
choose some other start/end point, and clockwise direction of machining. 
The workpiece zero point also can be chosen to lie at some other location. 

FIGURE 6.1 Triangular groove on a plate . 

M06 Tl; 

M03 SlOOO; 

G90 G43 HOl; 

GOO XO Y60 ZlOO; 

Zl; 

GOl Z-2 FlO; 

YO F60; 

X60; 

XO Y60; 

Z-4 FlO; 

YO F60; 

X60; 

XO Y60; 

Z-6 FlO; 

YO F60; 

(Tool number 1) 
(CW rpm 1000) 
(Tool length compensation) 
(Rapid positioning to 100 mm above the top 
corner of the groove) 
(Rapid positioning to 1 mm above the workpiece) 
(Hole of 2-mm depth) 
(2-mm-deep groove along theY-axis) 
(2-mm-deep groove along the X-axis) 

(2-mm groove at 45°) 
(Hole of 4-mm depth) 
(4-mm-deep groove along theY-axis) 
(4 mm-deep groove along the X-axis) 
(4-mm groove at 45°) 
(Hole of 6-mm depth) 
(6-mm-deep groove along theY-axis) 
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X60; 

XO Y60; 

Z-8 FlO; 

YO F60; 

X60 ; 

XO Y60; 

Z-10 FlO; 

YO F60; 

X60; 

XO Y60; 

GOO ZlOO; 

M05; 

M30; 

(6-mm-deep groove along the X-axis) 
(6-mm groove at 45°) 
(Hole of 8-mm depth) 
(8-mm-deep groove along the Y-axis) 
(8-mm-deep groove along the X-axis) 
(8-mm groove at 45°) 
(Hole of 10-mm depth) 
(10-mm-deep groove along theY-axis) 
(10-mm-deep groove along the X-axis) 
(10-mm groove at 45°) 
(Rapid retraction to 100 mm above the 
workpiece) 
(Spindle stop) 
(Execution end and control reset) 

The program given above can be made shorter by using a subpro­
gram to store the repetitive blocks. Program 00002 is such a program 
that calls program 00003 as a subprogram, five times. 

00002; 

G21 G94 ; 

G54; 

G91 G28 XO YO ZO; 

M06 Tl; 

M03 SlOOO; 

G90 G43 HOl; 

GOO XO Y60 ZlOO; 

Zl; 

GOl Z-2 FlO; 

M98 P0003; 

GOl Z-4 FlO; 

M98 P0003; 

GOl Z-6 FlO; 

M98 P0003; 

GOl Z-8 FlO; 

M98 P0003; 

GOl Z-10 FlO; 

M98 P0003; 

GOO ZlOO; 

M05; 

M30; 

00003; 

(Program number 2) 
(Millimeter mode and feedrate in millimeter per 
minute) 

(Workpiece coordinate system) 
(Reference point return) 
(Tool number 1) 

(CW rpm 1000) 
(Tool length compensation) 
(Rapid positioning to 100 mm above the top 
corner of the groove) 
(Rapid positioning to 1 mm above the workpiece) 
(Hole of 2-mm depth) 
(Subprogram call of 00003) 
(Hole of 4-mm depth) 
(Subprogram call of 00003) 
(Hole of 6-mm depth) 
(Subprogram call of 00003) 
(Hole of 8-mm depth) 
(Subprogram call of 00003) 
(Hole of 10-mm depth) 
(Subprogram call of 00003) 
(Rapid retraction to 100 mm above the 
workpiece) 
(Spindle stop) 
(Execution end and control reset) 

(Program number 3) 
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X60 ; 

XO Y60; 

M99; 
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(Groove along theY-axis, at the current depth) 
(Groove along the X-axis, at the current depth) 

(Groove at 45°, at the current depth) 

(Return to the calling program) 

6.3 Multiple Call of a Subprogram 
It is possible to call the subprogram a desired number of times repeat­
edly, that is, one after another. Up to 999 repetitions are permitted. 
The argument of Pin M98 block must contain seven digits (or mini­
mum five digits) for this. Four digits from the right are considered the 
(sub)program number, and the remaining digits (maximum three) to 
the left indicate the number of repetitions. And if eight digits are 
specified in the P-word, the eighth digit from the right is ignored: 

M98 P50001 ; 

M9 8 P050001; 

M98 P0050001; 

M98 P99~0001 ; 

M98 P1 23 4 0001; 

(Calls program number 1, five times, which is 
equivalent to five consecutive blocks of M98 PODOl 
or M98 Pl) 

(Same as above) 

(Same as above) 

(Program number 1 is called 999 times) 

(Program number 1 is called 234 times. The eighth 
digit from right is ignored) 

A subroutine also can be repeatedly called by inserting an L-word 
in the M98 block. The argument of the L-word is the number of repeti­
tions. The advantage of using this method is that up to 9999 repetitions 
would be possible, compared to only 999 with the earlier method: 

M98 POOOl L9999 ; 

M98 Pl L9999 ; 

M98 Pl Ll OOOO ; 

(Program number 1 is called 9999 times) 

(Same as above) 
(Illegal L-word) 

If the repeated call of a subprogram simply retraces the toolpath, 
the repetition would be unnecessary and meaningless. Repetition 
would be useful only in incremental mode where it is possible to have 
different toolpaths in the subsequent executions of the same subpro­
gram. For example, program 00004 repeatedly calls program 00005 
five times in incremental mode, for making the groove of Fig. 6.1. 

00004; 

G21 G9 4 ; 

G5 4 ; 

G91 G28 XO YO ZO ; 

M06 Tl ; 

M03 SlOOO ; 

G90 G43 HOl ; 

(Program number 4) 
(Millimeter mode and feedrate in millimeter 
per minute) 
(Workpiece coordinate system) 

(Reference point return) 
(Tool number 1) 

(CW rpm 1000) 
(Tool length compensation) 
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GOO XO Y60 ZlOO; 

Zl; 

GOl ZO FlO; 

G91; 

M98 P50005; 

G90 GOO ZlOO; 

M05; 

M30; 

00005 ; 

Z-2 FlO; 

Y-60 F60; 

X60 ; 

X-60 Y60; 

M99; 

(Rapid positioning to 100 mm above the top cor­
ner of the groove) 
(Rapid positioning to 1 mm above the workpiece) 
(The tool touches the workpiece) 
(Incremental coordinate mode) 
(Subprogram call of 00005, five times) 
(Rapid retraction to 100 mm above the workpiece) 

(Spindle stop) 
(Execution end and control reset) 

(Program number 5) 
(Depth of hole increased by 2 mm) 
(Groove along theY-axis, at the current depth) 
(Groove along the X-axis, at the current depth) 
(Groove at 45°, at the current depth) 
(Return to the G90 GOO Z100 block of the calling 
program, after five successive executions of the 
subprogram) 

Though the subprogram given above works fine, it can be made 
a little bit more general by invoking the incremental mode inside it. 
Then, even if it is called in absolute mode, the groove would be cor­
rectly made. This reduces the possibility of its incorrect use. Programs 
00006 and 00007 use this idea. 

00006; 

G21 G94 ; 

G54; 

G91 G28 

M06 Tl; 

xo 

M03 SlOOO ; 

YO 

G90 G43 HOl; 

ZO; 

GOO XO Y60 ZlOO; 

Zl; 

GOl ZO FlO ; 

M98 P50007; 

G90 GOO ZlOO; 

M05; 

M30; 

00007; 

G91 Z-2 FlO; 

Y-60 F60; 

(Program number 6) 
(Millimeter mode and feedrate in millimeter 
per minute) 
(Workpiece coordinate system) 
(Reference point return) 
(Tool number 1) 
(CW rpm 1000) 
(Tool length compensation) 
(Rapid positioning to 100 mm above the top 
corner of the groove) 
(Rapid positioning to 1 mm above the 
workpiece) 
(The tool touches the workpiece) 
(Subprogram call of 00007, five times) 
(Rapid retraction to 100 mm above the 
workpiece) 
(Spindle stop) 
(Execution end and control reset) 

(Program number 7) 
(Depth of hole increased by 2 mm) 
(Groove along theY-axis, at current depth) 
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X-60 Y60; 

M99; 
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(Groove along the X-axis, at current depth) 
(Groove at 45°, at current depth) 
(Return to the G90 GOO ZlOO block of the call­
ing program, after five successive executions 
of the subprogram) 

The subprogram given above is definitely better, since it can be 
called in both absolute and incremental modes. Nevertheless, it does 
have a shortcoming: it forces incremental mode when the execution 
returns to the calling program. Moreover, it assumes that COl is active 
at the time of calling it. This is yet another source of programming 
errors. Subprograms and macros should be made as general as 
possible / practical, because usually these are developed by expert 
programmers for use in several programs prepared by other program­
mers. If a new programmer calls a subprogram developed by some 
other programmer, he definitely does not expect that the subprogram 
would change the coordinate mode or any other setting of the calling 
program! Fortunately, using macro-programming features, it is pos­
sible to identify the current coordinate mode, among several other 
things. So, a subprogram can be designed in such a manner that it 
does not change the current status of the control. This can be done by 
identifying the status of the control in the beginning of the subpro­
gram, and restoring it in the end, that is, just before exiting to the 
calling program by M99. 

Note that the subprogram 00007 needs to use three things: COl, 
G91, and F-code. COl belongs to G-eode Group 01, and G91 belongs 
to Group 03. The other G-eodes in Group 01 are GOO, C02, G03, and 
G33 on a milling machine. On the other hand, G90 is the only other 
G-eode in Group 3. Referring to Table 3.10(b), the system variable 
#4001 stores 0, 1, 2, 3, or 33 depending on the currently active G-eode 
of Group 01 (GOO, COl, C02, G03, and G33, respectively). For exam­
ple, if COl is currently active, #4001 would store 1 (recall that, at any 
time, one G-eode from each group remains active). Similarly, system 
variable #4003 stores 90 or 91 depending on which one of G90 and 
G91 is currently active. The current feedrate is stored in system vari­
able #4109. 

The subprogram 00008 uses these system variables to ascertain 
the current status of the control in the beginning of the program, and 
restores it in the end (recall that a statement such as COl, without any 
axis words, simply changes the currently active G-eode of Group 1 to 
COl, without causing any tool movement): Note that the logic works 
even in the case of multiple calls of the subprogram. 

In addition, for the purpose of making subprogram 00008 even 
more general, spindle speed also can be specified inside it, so that a 
possibly incorrect rpm specified in the calling program is not used. 
Since the subprogram assumes a constant rpm, G97 would need to be 
specified. Referring to Table 3.10(b), system variable #4013 stores 96 or 

----------

127 
·-~-

www.EngineeringBooksPdf.com



128 Chapter Six 

97 depending on which one of G96 (constant surface speed) and G97 
(constant rpm) is currently active, and the current spindle speed/ 
constant surface speed is stored in the system variable #4119. 

Moreover, the feedrate in the subprogram is desired to be in mil­
limeter per minute. So, G94 is also needed. Referring to Table 3.10(b) 
again, system variable #4005 stores 94 or 95, corresponding to G94 
and G95. 

Finally, the subprogram has been written in millimeter mode. So, 
if it is called in inch mode, the execution should be terminated with 
an alarm message (recall that the coordinate mode cannot be switched 
in the middle of a program). System variable #4006 stores 20 or 21, 
corresponding to G20 and G21 [refer to Table 3.10(b).] 

00008; 

#1 #4001; 

#2 

#3 

#4 

#4003; 

#4109; 

#4013; 

#5 #4119; 

#6 = #4005; 

#7 = #4006; 

IF [#7 EQ 20] THEN 

G94 G97 G91; 

GOl Z-2 FlO SlOOO; 

Y-60 F60; 

X60; 

X-60 Y60 ; 

G#l G#2 F#3 G#4 S#5 

M99; 

(Program number 8) 
(#1 stores 0, 1, 2, 3, or 33) 
(#2 stores 90 or 91) 
(#3 stores the current value specified in the F­
word, i.e., the current feedrate) 
(#4 stores 96 or 97) 
(#5 stores the current value specified in the S­
word, i.e., the current rpm or the constant sur-
face speed, depending on which one of G97 and 
G96 is currently active) 
(#6 stores 94 or 95) 
(#7 stores 20 or 21) 

#3000 = 1 (INCH MODE NOT PERMITTED); 
(If G20 is used in the calling program, the exe­
cution would immediately terminate with the 
alarm message "3001 INCH MODE NOT PER­
MITTED." Refer to Macro Alarms in Sec. 3.5) 
(Selects feedrate in millimeter per minute, 
constant rpm and incremental mode) 
(Depth of hole increased by 2 mm at 1000 rpm 
and 10 mm/ min feedrate) 
(Groove along theY-axis, at the current depth) 
(Groove along the X-axis, at the current depth) 
(Groove at 45°, at the current depth) 
G#6; 
(Restores the original control status) 
(Return to the calling program) 

The subprogram 00008 is fairly general. It only assumes that the 
tool (a 6-mm-diameter slotdrill) touches the workpiece at the top cor­
ner of the triangular groove, at the time of calling it. The only lirnita­
tion is that it can only make grooves of depths in the multiple of 
2 mm. For example, M98 P40008 would make a groove of 8-mm depth. 
But it is not possible to have a depth of, say, 5 mm, as it is not a multiple 
of 2 mm. Moreover, the tool remains at the bottom of the top corner 
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of the groove when the execution returns to the calling program. 
Though the XY-position is the same as in the beginning, the Z-position 
also should be restored. Ideally, a subprogram or a macro should do 
whatever it is required to do, without disturbing any control setting. 

Though macros can be made to do virtually anything, subpro­
grams have their own limitations, because it is not possible to pass on 
any values to its variables while calling it. Moreover, a subprogram 
does not have its own set of local variables. It only acts as an exten­
sion of the calling program. 

A macro for an arbitrary depth of the groove is given in Chap. 8. 
If the same thing is to be done through a subprogram, a variable, say, 
#100 will need to be defined, storing the desired depth of the groove, 
before calling the subprogram, so that the subprogram could use it. 
Since such a subprogram uses a logic involving execution in a loop, a 
flowchart of the chosen algorithm must be prepared before writing 
the program. Figure 6.2 shows such a flowchart. Subprogram 00009, 
which is based on this flowchart, is given along with the relevant part 
of the calling program. Note that 00009 needs to be called only once, 
for any given depth of groove. Use of loops eliminates the need for 
multiple calls of subprograms. 

<ascertain initial control status> 
depth of groove = <assign a value> 
remaining depth = depth of groove 

no 

<increase the current depth by 2> 
remaining depth = remaining depth - 2 

<increase the current depth by remaining depth> 
<restore the initial Z-position of the tool> 
<restore the original control status> 

FIGURE 6.2 Flowchart of an algorithm for making a groove of any specified 
depth, using a WHILE statement. 
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(Calling program) 

#100 = 5; 

M98 P0009; 

M30; 

00009; 

#1 #4001; 

#2 #4003; 

#3 #4109; 

#4 #4013; 

#5 #4119; 

#6 #4005; 

#7 #4006; 

#8 ABS[#lOO]; 

#9 = #8; 

IF [#7 EQ 20] THEN #3000 

G94 G97 G91; 

WHILE [#9 GT 2] DO 1; 

GOl Z-2 FlO SlOOO; 

Y-60 F60; 

(Specify the desired depth of the 
groove) 
(Subprogram call of 00009) 

(Execution end and control reset) 

(Program number 9) 
(#1 stores 0, 1, 2, 3, or 33) 
(#2 stores 90 or 91) 
(#3 stores the current value specified in 
the F-word, i.e., the current feedrate) 

(#4 stores 96 or 97) 
(#5 stores the current value specified in 
the S-word, i.e., the current rpm or the 
constant surface speed, depending on 
which one of G97 and G96 is currently 
active) 
(#6 stores 94 or 95) 
(#7 stores 20 or 21) 
(#8 stores the desired depth of the 
groove. The ABS function ensures that 
even if the depth is specified with a 
minus sign, the program would work 
correctly) 
(#9 stores the remaining depth of the 
groove, which is to be machined) 

= 1 (INCH MODE NOT PERMITTED); 
(If G20 is used in the calling program, 
the execution would immediately ter­
minate with the alarm message "3001 
INCH MODE NOT PERMITTED." 
Refer to Macro Alarms in Sec. 3.5) 
(Selects feedrate in millimeter per 
minute, constant rpm, and incremen­
tal mode) 
(Start of the WHILE loop. The loop is 
executed if the remaining depth of 
the groove is more than 2 mm. If not, 
the loop is skipped, and the execu­
tion jumps to the block following 
END1) 
(Depth of hole increased by 2 mm at 
1000 rpm and 10 mm /min feedrate) 
(Groove along theY-axis, at the current 
depth) 
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X60; 

X-60 Y60 ; 

#9 = #9 - 2 ; 

END l; 

GOl Z- #9 FlO; 

Y-60 F60; 

X60; 

X-60 Y60 ; 

GOO Z#S ; 

G#l G#2 F#3 G#4 

M99; 

S#S G#6; 
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(Groove along the X-axis, at the current 
depth) 
(Groove at 45°, at the current depth) 
(Remaining depth recalculated) 
(End of the WHILE loop. The execution 
jumps to the start of the loop to check if 
the remaining depth of the groove is 
still more than 2 mm) 
(Depth of hole increased by the required 
amount, which is now less than or 
equal to 2 mm, to reach the final depth 
of the groove, at 1000 rpm and 10 mm/ 
min feedrate) 
(Groove along the Y-axis, at the final 
depth) 
(Groove along the X-axis, at the final 
depth) 
(Groove at 45°, at the final depth) 
(Restores the initial Z-position of the 
tool) 
(Restores the original control status) 
(Return to the calling program) 

In program 00009, it is assumed that the maximum permissible 
depth of cut is 2 mm. As an exercise, try to modify the program when 
the maximum permissible depth of cut is 1 mm. Also, try to construct 
the loop using the IF _GOTO_ statement. The flowchart for such a 
case is given in Fig. 6.3. Note, however, that the WHILE statement is 
preferred over the IF _GOTO_ statement for constructing loops, as 
discussed in Chap. 5. 

The flowchart given in Fig. 6.3 would need to use the IF_ GOTO _ 
statement twice. This is because the desired depth of the groove 
may even be less than 1 mm. In the loop created by the IF _GOTO_ 
statement, the loop terminating condition is checked in the end. 
Therefore, it is also necessary to check the desired depth before 
entering the loop, to decide whether the loop should be executed. 
This problem was not there with the WHILE loop because the loop 
terminating condition is checked in the beginning of the loop. This 
is yet another reason why the WHILE loop is preferred over the 
IF _GOTO_loop. 

Programs 00008 and 00009 have used several of the macro­
programming features . The use of macro-programming features is 
not restricted to developing macros only, even though this is their 
main purpose. The main programs also can use these features . In 
fact, this is the way one should start learning macro programming. 
Writing macros for different applications should be started only 
after mastering the basic features of the language, by using these in 
main programs and subprograms, as much as possible. 
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<ascertain initial control status> 
depth of groove = <assign a value> 
remaining depth = depth of groove 

yes 

<increase the current depth by 1 > 
remaining depth = remaining depth - 1 

yes 

<increase the current depth by remaining depth> 
<restore the initial Z-position of the tool> 
<restore the original control status> 

FIGURE 6 .3 Flowchart of an algorithm for making a groove of any specified 
depth, using GOTO statements . 

6.4 Subprogram Nesting 
A subprogram can call another subprogram, which is called nesting. 
A maximum of four levels of nesting, involving the main program 
and four different subprograms, is permitted, that is, the main pro­
gram can call subprogram 1, subprogram 1 can call subprogram 2, 
subprogram 2 can call subprogram 3, and subprogram 3 can call sub­
program 4 (subprogram 4 cannot call any other subprogram). This is 
pictorially represented in Fig. 6.4, where the flow of execution is shown 
by arrows. Note that there is no restriction on the total number of sub­
programs or the number of nested subprograms in a main program, 
only that the level of nesting at a given place should be four or less. 

Refer also to Fig. 3.2 that explains that the variables of the main 
program and all the nested subprograms belong to the same set of 
variables. For example, if a variable, say #1, is being used by the main 
program as well as all the nested subprograms, then all five occur­
rences of #1 refer to the same memory location. 
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Main 
program 

First 
subprogram 

Second 
subprogram 

Third 
subprogram 

Fourth 
subprogram 

00004; 00005; 

M99; 

F IGURE 6 .4 Subprogram nesting. 

As an example of subprogram nesting, consider the job shown in 
Fig. 6.5, where five triangular grooves of 10-mm depth are to be 
machined on a plate of 600 mm x 300 mm size. The nesting feature of 
subprograms can be used to make the program for such a regular and 
repetitive pattern very short. Once again, the maximum permissible 
depth of cut is assumed to be 2 mm. Therefore, since the depth of the 
grooves is 10 mm, five passes for each triangle would be required. 
The whole exercise would need to be repeated five times, for making 
five triangular grooves. This can be done by two-level nesting. The 
call of subprogram 00011 makes the triangular grooves at five places, 
and the nested call of subprogram 00012 makes each groove in five 
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Note: 
1. The center lines of the five triangular grooves are shown. The width of the grooves, which is not 

shown, would be equal to the tool diameter. 
2. All the triangles are of the same size, and are evenly spaced. 
3. The sequence of toolpath segments is numbered, and the cutting direction is shown by arrows. 

Due to multiple passes, the tool path is 1 _, ( 2 _, 3 _, 4) five limes _, 5 _, (6 _, 7 _, B) 
five times. _, 9 ... , till the end point. 

4. The dashed lines represent rapid motion with GOO, 1 mm above the workpiece, showing dog-leg 
effect. Rapid positioning in a straight line is also possible, if parameter 1401#1 is set to 1. 

FIGURE 6 .5 Five triangular grooves in a regular pattern. 

0 
0 
M 

X 

www.EngineeringBooksPdf.com



134 Chapter Six 

passes. The workpiece zero point is chosen to lie at the lower left cor­
ner of the plate, with Z-datum at its upper surface. Note that, in such 
applications, the subprograms need to be written in the incremental 
mode. No attempt has been made in these programs to make these 
suitable for a general case, using macro-programming features, as the 
sole objective here is to illustrate subprogram nesting. 

00010; 

G21 G94; 

G54; 

G91 G28 xo YO 

M06 Tl; 

M03 SlOOO; 

G90 G43 HOl; 

GOO 

Zl; 

M98 

GOO 

MOS; 

M30; 

X- 25 Y25 

P50011; 

ZlOO; 

00011; 

ZO; 

ZlOO; 

G91 GOO XlOO Y25; 

GOl Z-1 FlO; 

M98 P50012; 

G90 GOO Zl; 

M99; 

00012; 

G91 GOl Z-2 FlO; 

XSO YlOO F60; 

Y-100; 

X-50; 

M99; 

(Program number 10) 
(Millimeter mode and feedrate in millimeter 
per minute) 
(Workpiece coordinate system) 

(Reference point return) 

(Tool number 1) 

(CW rpm 1000) 
(Tool length compensation) 
(Rapid positioning to 100 mm above the start 
point, as designated in Fig. 6.5) 

(Rapid to 1 mm above the workpiece) 
(Subprogram call of 00011, five times, for the 
five triangles) 
(Rapid retraction to 100 mm above the 
workpiece) 

(Spindle stop) 
(Execution end and control reset) 

(Program number 11) 
(Rapid positioning to the lower left corner of 
the triangular groove that is to be machined 
next) 
(The tool touches the workpiece) 

(Subprogram call of 00012, five times, for the 
five passes) 

(Rapid retraction to 1 mm above the 
workpiece) 
(Return to GOO Z100 block of 00010, after five 
successive executions of this subprogram) 

(Program number 12) 

(Depth of hole increased by 2 mm) 

(Groove cutting along the slant side of the 
triangle, at the current depth) 
(Groove cutting along the Y-axis side of the 
triangle, at the current depth) 

(Groove cutting along the X-axis side of the 
triangle, at the current depth) 

(Return to G90 GOO Z1 block of 00011, after 
five successive executions of this subprogram) 
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The example given above uses two-level nesting. Though the 
control permits nesting up to four levels, nesting beyond two levels is 
rarely used, as such programs tend to become too complex to under­
stand. The objective of nesting is to simplify programming, not to 
complicate it! 

Though nesting and use of macro-programming features in sub­
programs make a program quite general and compact, the real power 
comes through macros that have virtually unlimited scope. Of course, 
a thorough understanding of subprograms is absolutely necessary 
for developing professional-quality macros. Therefore, the readers 
should read and re-read each and every line of this chapter, until the 
concepts are crystal clear. 
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CHAPTER 7 
Macro Call 

7.1 Introduction 
Several of the macro-programming features have already been dis­
cussed. The use of these features is not restricted to just macros. They 
can be used anywhere--in the main program, subprograms, and 
macros. A macro program, however, is a unique feature of macro pro­
gramming, which adds an entirely new dimension to what can be 
done through programming. Developing a macro does require good 
programming skills, possessed by very few individuals, but using a 
macro is pretty simple--it is like commanding a canned cycle. This 
chapter explains how to define and use macros. 

7.2 Macro versus Subprogram 
A macro can be broadly described as a sophisticated version of sub­
programs (this is the reason why this chapter is preceded by the 
chapter, Review of Subprograms). The overall program structure is 
the same for both. A subprogram can be called by the main program, 
other subprograms or macros, and it can also call any type of pro­
gram. Similarly, a macro can be called by any program, and it can call 
any program. Both allow nesting up to a maximum of four levels. In 
case of a mixed nesting, a maximum of four subprograms and four 
macros can appear, in any order, apart from the main program. 

The single major difference between a subprogram and a macro 
lies in the flexibility of the input data. A subprogram either does not 
use variables at all, or always uses fixed initial data for the variables 
used inside it, with values as defined in the calling program at the 
time of calling the subprogram. A macro, on the other hand, uses the 
values specified in the macro-call statement, for its local variables. (If 
the macro call statement does not define a local variable, it remains 
null, initially.) In fact, as discussed in Chap. 3, a subprogram does not 
even have its own set of local variables. It uses the variables of the 
calling program. Common variables, permanent common variables, 
and system variables, of course, behave in the same manner in both 
subprograms and macros. 
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7.3 Macro Call 
By now, it should be clear that the main difference between a macro 
call and a subprogram call is that the level of local variables changes 
with a macro call, but it does not change with a subprogram call. 
Moreover, a macro call can pass data to the called program, whereas 
a subprogram call does not have this capability. 

A subprogram is called by M98 and M198. A macro can be called 
using any of the following methods: 

• Simple call (G65) 

• Modal call (G66) 

• Call with user-defined G-eode 

• Call with user-defined M-code 

Those who are new to macro programming may skip the last two 
methods of calling a macro, at this stage. Even the modal call (G66) is 
not very frequently used. G65 can be used for calling any macro, 
without any limitation. Other methods do provide some convenience, 
but one can manage with G65 also. However, one must know all the 
methods because of the specific advantages these offer. Moreover, 
any method may have been used in the programs developed by other 
programmers, which one can understand only if one knows the 
method used. However, in the interest of a steeper learning curve, 
one may choose to read about G65 only. The remaining methods can 
be learned at a later stage. One may skip Sec. 7.4 also. 

Simple Call (G65) 
The syntax of macro call with G65 is 

G65 P<program number> L<repetition count> <argument 1 > 
<argument n > ; 

The program number is the number of an existing program that is 
to be called. Usually, 8000 or 9000 series numbers are used as macro­
program numbers, since these can be protected from accidental 
editing/ deletion, through parameters 3202#0 and 3202#4, respectively. 
However, any legal program number (1 to 9999) can be used. 

Repetition count, which defaults to one (i.e., L1 can be omitted), 
is the number of successive executions of the called macro. This is the 
only way a macro can be repeatedly executed. The repetition count of 
a macro cannot be included in the P-word, unlike what can be done 
for repeating a subprogram call. As explained in Chap. 6, the repeti­
tion count of a subprogram can be included in the P-word also (apart 
from the L-word method). Here, the P-word is used only for specify­
ing the program number. Up to 9999 macro repetitions are possible. 
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The argument specification is for passing on the desired initial 
values to the local variables of the macro. All the local variables, #1 
through #33, can be initialized. The uninitialized local variables 
remain null in the beginning of the macro execution. The exact 
method of argument specification is discussed in Sec. 7.5. 

As an example, G65 P8000 L2 AlO B20 calls program number 8000 
twice, in succession, with #1 (because of address A) and #2 (because of 
address B) set to 10 and 20, respectively, whereas the other local variables 
(#3 through #33) remain null, initially. Note that if the called macro mod­
ifies variables #1 and/ or #2, its second call would start with the new 
values stored in #1 and #2. Similarly, if the first call defines a new local 
variable, say, #3, then the second call would start with the stored value in 
#3. (The first call started with a null value for #3.) In the repeated calls of 
a macro, the specified values in the argument list are passed on to the 
local variables only in the first execution of the macro. Any subsequent 
execution uses the values obtained in the previous execution. 

Thus, G65 P8000 L2 AlO B20 is not equivalent to G65 P8000 A10 
B20 commanded twice in two successive blocks. If a macro is called 
in two (or more) successive blocks, all the executions become inde­
pendent of the previous executions, with each execution using the 
specified values in its macro-call block, as the initial values for its 
local variables. 

For a better clarity, consider program 00013 that repeatedly calls 
subprogram 00014 and macro 00015, thrice each, followed by three 
separate macro calls of 00016 in three successive blocks. Program 
numbers 14, 15, and 16 are essentially same, but behave differently 
depending on how these are called, which explains the underlying 
principles. Recall that the same program becomes a subprogram 
when called by M98, and a macro when called by G65 or G66. Some of 
these concepts have already been discussed in Chap. 3. (Refer back 
to Figs. 3.1, 3.2, and 3.3.) 

00013; 

#1 = 1; 

M98 P30014; 

G65 POOlS L3 Al; 

G65 P0016 Al; 

(Program number 13) 

(The value assigned here is used only by this pro­
gram and the nested subprogram 00014, but not 
by the nested macros, because a subprogram 
uses the local variables of the calling program, 
whereas macros use a different set or level of local 
variables) 

(Same as M98 P0014 L3, to execute 00014 thrice in 
succession, as a subprogram) 

(Calls 00015 as a macro, thrice in succession. The 
first execution uses #1 = 1, initially, but the second 
and the third executions start with the updated 
values of #1, obtained at the end of the first and 
the second executions, respectively) 

(Calls 00016 as a macro once, with #1 set to 1, 
initially) 
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G65 P0016 A1; (This macro call is independent of the call in the 
previous block. So, 00016 is executed once, with 
#1 again initially set to 1, even if #1 of the previous 
execution contained a different value. In fact, #1 of 
the previous execution carries no meaning now) 

G65 P0016 A1; (Same as above) 

#503 = #1; (Since the subprogram call modified the value 
stored in #1 to 7, #503 would store 7. A macro call 
has no effect on the local variables of the calling 
program) 

M30; (Execution end and control reset) 

00014; (Program number 14) 

#1 = #1 + 2; (Since this program has been called as a subpro-
gram, #1 used here is the same as #1 of the calling 
program 00013. Since every execution of this pro-
gram adds 2 to the value stored in #1, the final 
value becomes 7, after three executions) 

#500 #1; (#500 stores 3 after the first execution, 5 after the 
second, and 7 after the third and final execution) 

M99; (Return to the calling program, after all the speci-
fied number of repetitions are over. After the 
return, #1 of the calling program would contain 7, 
since it is the same as #1 of this subprogram) 

00015; (Program number 15) 
#1 = #1 + 2. (Since this program has been called as a macro, #1 

used here is different from #1 of the calling pro-
gram 00013. The macro call assigns a value of 1 to 
the macro variable #1, in the beginning of the first 
call of this program. The repeated calls use the 
updated values of #1. Since every execution of 
this program adds 2 to the value stored in #1, the 
final value becomes 7, after three executions) 

#501 #1; (#501 stores 3 after the first execution, 5 after the 
second, and 7 after the third and final execution) 

M99; (Return to the calling program, after all the speci-
fied number of repetitions are over. Since #1 of 
this program and #1 of the calling program are 
different variables, #1 of the calling program 
would still contain 7. It is just a matter of chance 
that #1 of this program also contains 7 after three 
executions. In fact, when the execution returns to 
the calling program, after executing a macro, all the 
local variables of the macro become non-existent, 
hence meaningless) 

00016; (Program number 16) 

#1 = #1 + 2; (Since this program has been called as a macro, 
without repetition, its execution always starts 
with #1 = 1, irrespective of the number of execu-
tions of this program) 
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M99; 
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(#502 stores 3, irrespective of how many times this 
macro is called) 

(Return to the calling program) 

To summarize, the first execution of the subprogram starts with 
#1 = 1, and sets #1 = 3 and #500 = 3 when the execution ends. Every 
subsequent execution of the subprogram adds 2 to these values. 
Therefore, at the end of three executions of the subprogram, both #1 
and #500 store 7. Next comes the macro call of 00015, with the 
macro variable #1 initially set to 1 (because of the A1 word in 
the macro call) . At the end of macro execution, both #1 and #501 
store 3. Now, the macro is to be executed two more times. Since the 
subsequent executions start with the updated value stored in #1, 
#501 stores 7 at the end of three calls of the macro. Finally, the three 
calls of macro 00016 are independent of one another. So, #1, and 
hence #502 also, store 3 at the end of each execution. In the end, 
#503 stores the value stored in #1 of the main program. Thus, the 
result (stored values in the permanent common variables) after 
complete execution of 00013 is 

#500 stores 7. 
#501 stores 7. 
#502 stores 3. 

#503 stores 7. 

This example clearly explains that the local variables of the main 
program and the subprogram are the same (belonging to level 0), but 
the macro uses a different set of local variables (belonging to level1). 
The permanent common variables (#500 and #501) have been used 
here, so that the values stored in them could be inspected at the end 
of the program execution. Recall that the content of a permanent com­
mon variable is not washed out by system reset or power down. How­
ever, this also means that if a program does not modify the content of 
a permanent common variable, the variable would display the old 
value stored in it! Therefore, run program number 8001 or 8005, given 
in Chap. 5, for clearing all permanent common variables, if their old 
values are likely to cause confusion. 

Modal Call (G66) 
Sometimes a macro must be called several times, but not at the same 
tool position. For example, assume that a macro has been written for 
making a hole in some special manner (e.g., with progressively reduc­
ing peck lengths). Now, if several holes are to be drilled, the macro 
would need to be called, using G65, several times, after bringing the 
tool to the desired locations: 
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<Move the tool to locat ion 1> 

G65 P L_ <argument specification>; 

<Move the tool to location 2> 

G65 P_ L_ <argumen t speci f ication>; 

<Move t h e tool to location 3> 

G65 P_ L <ar gument specification>; 

<Move the tool to l ocation n> 

G65 P L_ <argument specification>; 

Though there is nothing wrong with this method, the G65 block 
needs to be inserted repeatedly. In case any change in the G65 block 
is desired, the change would have to be incorporated in all the G65 
blocks. This not only involves extra typing effort, the program size 
also increases. The modal call, G66, removes this difficulty. A G66 
macro call remains effective until canceled by G67. After a G66 block, 
whenever the tool is moved in a subsequent block, the macro is auto­
matically called, after completing the motion, till G67 is programmed, 
which cancels the G66 mode. The program structure with G66 would 
take the following form (this is similar but not exactly equivalent to 
the G65-form given above, due to reasons explained below): 

G66 P_ L_ <argument specification>; 

<Move the tool to locat i on 1> 

<Move the tool to location 2> 

<Move the too l to location 3> 

<Move the tool to location n> 

G67 ; 

The syntax of G66 is exactly same as that of G65. All the rules appli­
cable to G65 apply also to G66. A major difference is that G66 only 
stores the information provided in its block as modal data (i.e., data for 
future use, until changed), without calling the macro. The macro is 
called only when the tool is moved in a subsequent block, after the 
completion of the specified motion. Moreover, the values specified in 
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the G66 block are passed on to the macro only in its first call. All other 
calls, till G67 is encountered or another G66 is commanded, use the 
updated values for the local variables, obtained from the preceding 
execution. Program numbers 17, 18, and 19 illustrate these rules. 

Single call of a macro with G66: 

00017; (Program number 17) 

G66 POOlS Al; (Stores modal information, without calling the macro. 
Though program number 15 is the same program 
given earlier, the explanations given on the right­
hand side would not apply here) 

G91 GOO XlOO ; (The tool moves 100 mm along the X-axis. Thereafter, 
00015 is called as a macro, with #1 initially set to 1. 
The execution of the macro assigns a value of 3 to 
both #1 and #501) 

XlOO; (The tool further moves 100 mm along the X-axis. 
Thereafter, 00015 is again called as a macro, wi th #1 
initially set to 3, its updated value in the previous 
execution. Therefore, the current execution of the 
macro assigns a value of 5 to both #1 and #501) 

G67; (G66 mode canceled) 

XlOO; (Since G66 is no longer active, only the tool would 
move by 100 mm, without calling any macro) 

M3 0; (Execution end and control reset) 

Repeated call of a macro with G66: 

00018; (Program number 18) 

G66 POOlS L3 Al; (Stores modal information, without calling the 
macro) 

G91 GO 0 Xl 0 0; (The tool moves 100 mm along the X-axis. Thereaf­
ter, 00015 is called as a macro thrice, with #1 ini­
tially set to 1. The three executions of the macro 
assign a value of 7 to both #1 and #501) 

XlOO ; (The tool further moves 100 mm along the X-axis. 
Thereafter, 00015 is again called thrice as a macro, 
with #1 initially set to 7, its updated value in the previ­
ous execution. Therefore, the current three executions 
of the macro assign a value of 13 to both #1 and #501) 

G67; (G66 mode canceled. G67 can be omitted here 
because the next command is M30, causing control 
reset, which automatically changes the control status 
to G67) 

M3 0; (Execution end and control reset) 

Macro call with multiple G66 blocks: 

00019; 

G66 POOlS Al; 

(Program number 19) 

(Stores modal information, without calling the 
macro) 
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G91 GOO XlOO; (The tool moves 100 mm along the X-axis. Thereafter, 
00015 is called as a macro, with #1 initially set to 1. 
The execution of the macro assigns a value of 3 to 
both #1 and #501) 

G6 6 POO l S Al; (Stores modal information, without calling the 
macro. A second or any subsequent G66 block remains 
independent of previous G66 blocks. In fact, the pre­
vious G66 automatically gets canceled, and the new 
G66 takes effect. So, the updated values for the local 
variables from the previous execution are not used. 
The next execution of 00015 would again start with 
the specified data in the current G66 block) 

XlOO; 

G67; 

M30; 

(The tool further moves 100 mm along the X-axis. 
Thereafter, 00015 is again called as a macro, with #1 
initially set to 1, its specified value in the currently 
active G66 block. Therefore, the current execution of 
the macro assigns a value of 3 to both #1 and #501, 
which happens to be the same as that obtained in the 
previous execution of the macro, because all the 
modal parameters are same in both the G66 blocks) 

(The current G66 mode canceled. The previous G66 
mode was automatically canceled when a new G66 
was commanded) 

(Execution end and control reset) 

Additional comments: 

• Nesting with G66 is permitted. A maximum nesting depth of 
four levels is allowed, including both G65 and G66. Subpro­
grams also can be nested to G66. Over all, a maximum of four 
macros (called by G65 and/or G66) and four subprograms can 
be nested. 

• The G66 block only stores modal data. It does not call a macro. 
Therefore, no movement command should be included in the 
G66 block. If the movement command (such as XlOO) appears 
before the G66 word, the tool moves without calling the 
macro (though modal data are stored for future use). If it 
appears after the G66 word, it is taken as data for a local vari­
able (XlOO would assign a value of 100 to variable #24)! More­
over, an address such as GOl at the right of G66 is illegal, 
since the letters L, 0, N, G, and Pare not allowed to be used 
for argument specification. 

• While G66 is active, M-codes or any other code that does not 
cause tool movement are executed without calling the macro. 

• As with G65, up to 9999 repetitions (specified with address L) 
in a G66 macro call are permitted. 

• The modal data are defined only in the G66 block. For example, 
in a subsequent block where G66 is active, XlOO l3 would not 
change the repetition count to 3. 
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• If a macro call is needed without tool movement, specify zero 
distance for some axis in incremental mode. For example, 
G91 GOO XO (GOO UO on a lathe) would call the macro without 
any tool movement. Actually, an axis movement block is nec­
essary; the specified displacement can be zero also! 

• In the word address format, which today's CNC machines use, 
the order of different words associated with a command is 
not important. For example, G66 Pl5 Al and G66 Al Pl5 are 
both equivalent (though Pl5 G66 Al is illegal, since all 
arguments of a G-eode must come after the code). However, 
only the recommended order should be used, so as to 
eliminate any possibility of confusion to other users. 

Call with User-Defined G-Code 
It is possible to define up to 10 new G-eodes that can be used for 
calling a macro in the way G65 calls it, with the difference that the 
program number is not required to be mentioned with the defined 
G-eode. Such G-eodes become similar to the built-in standard G­
eodes, especially like the codes for canned cycles (those canned cycles 
that are defined in one block). For using these codes, one only needs 
to know the meanings of the used letter addresses. For example, GlOO 
D80 QS R90 FlO SlOOO may be designed to call a macro for drilling a 
hole with progressively reducing peck lengths, with the following 
meanings for its letter addresses. (We have not yet discussed the cor­
respondence between various letter addresses and the local variables 
of the called macro. The only thing we have used so far is letter A 
defines variable #1 and letter B defines variable #2. So, do not worry 
about how the called macro in this example uses the given data. It is 
discussed later.) 

GlOO : 

D80: 

QS : 

R90: 

FlO : 

51000: 

New G-eode 
Depth of hole (80 mm) 
First peck length (5 mm) 
Reduction percentage for the next peck length (90%) 
Feedrate (10 mm / min) 
Spindle speed (1000 rpm) 

If GlOO is designed to call macro 09010, the given command is equiv­
alent to G65 P9010 D80 QS R90 FlO SlOOO. 

The advantage of calling a macro in this manner is that even a 
programmer with less programming skills can make use of some (not 
all) predefined macros, without needing to know anything about 
macro programming! A new G-eode can be used just like a standard 
G-eode. One need not even know the macro program number it calls. 
In other words, some extra G-eodes become available on the machine. 
Of course, only an experienced programmer can define such codes. 
The exact procedure is described below. 
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Program Number Parameter Number 

09010 6050 

0 9011 6051 

09012 I 6052 

09013 6053 

09014 6054 ________________________ ., __ 

09015 6055 

09016 6056 

09017 6057 

09018 6058 

09019 6059 

TABLE 7.1 Correspondence between Program 
Numbers and Parameter Numbers, for Macro Call 
Using a G-Code 

Only the macros bearing program numbers 9010 through 9019 
can be called by this method. The G-eodes for calling theses macros 
can have any number between 1 and 9999. However, only the unused 
G-eodes should be selected, otherwise the existing G-eode would get 
redefined! 

The G-eode numbers, which are selected for calling macros (in 
the range 9010 to 9019), are specified in certain parameters (6050 
through 6059). The correspondence between the two is given in 
Table 7.1. For example, if 100 is stored in parameter 6050, G100 
would call the macro 09010. Similarly, if 1000 is stored in parame­
ter 6059, G1000 would call the macro 09019. And, if the program 
number corresponding to a defined G-eode does not exist, the con­
trol would enter the alarm state, displaying the "NUMBER NOT 
FOUND" alarm message. For example, storing 100 in parameter 
6050, without defining program 09010, would cause an alarm state 
if G100 is commanded. 

All the rules and restrictions that apply to G65 also apply to 
macro call with G-eodes. For example, 1 to 9999 repetitions can be 
specified with the address L. The arguments also are specified in the 
same manner. 

For the purpose of illustration, consider a very simple example of 
defining a code G500 (without any arguments) to unconditionally 
cause a dwell of 10 seconds. For this, store 500 in parameter 6050 
(assuming that parameter 6050 has not been not used for defining 
some other G-eode). Then, G500 would call macro 09010 that should 
be defined in the following manner: 
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09010; (The program number corresponding to parameter number 
6050, as per Table 7.1) 

G04 XlO; (Causes a dwell of 10 seconds) 

M9 9 ; (Return to the calling program) 

Now, in any program, wherever G100 is commanded, it would result 
in a dwell of 10 seconds. And, for a dwell of, say, 50 seconds, G500 L5 
would need to be programmed. G65 P9010 and G65 P9010 L5 also 
would do the same thing, causing delays of 10 and 50 seconds, 
respectively. Basically, G65 P _ is being replaced by a G-eode, for 
convenience. Extremely complex macros also can be used for defining 
new G-eodes. Such an example is not given here, as the idea was to 
explain only the methodology. 

Apart from this method of calling a program, a program can also 
be called with M-codes and T-codes, as discussed in the next section. 
In a program, which is called by any of these methods, all G-eodes are 
treated as ordinary G-eodes, with their original meanings. In other 
words, a G-eode in such programs would not call a program, even if 
it is designed to call a program. It would be executed in the usual 
manner. This issue is discussed in more detail later. 

Call with User-Defined M-Code 
The way a macro can be called by a G-eode, it can also be called by an 
M-code, exactly in the same manner. This method of macro call 
defines a new M-code, or redefines an existing M-code, if the number 
of a predefined M-code is chosen. Therefore, only an unused number 
should be selected. 

Any number between 1 and 99,999,999 can be used, which would 
need to be stored in any of the parameters between 6080 and 6089. Up 
to 10 M-codes can be defined. These call program numbers between 
09020 and 09029. The correspondence between the parameter num­
bers and the program numbers is given in Table 7.2. As an example, if 
M1000 is desired to be defined, 1000 would need to be stored in, say, 
parameter 6080 that would make M1000 call the macro 09020. And, 
if 09020 does not exist, an alarm would be generated, with the mes­
sage "NUMBER NOT FOUND." It is possible to specify up to 9999 
repetitions of the called macro, using the L-word. As in case of a G­
eode macro call, the method of specifying the arguments in the M1000 
(or in any other user-defined M-code) block, for passing on the 
desired values to the local variables of the called macro, is the same 
as that used in a G65/G66 macro call. 

There is a restriction that theM-code macro call, along with all the 
arguments, be used alone in its block. Otherwise, it would either be an 
illegal command, or it may ignore the other codes. Moreover, as in case 
of macro call using G-eodes, this method of macro call cannot be used 
in programs called by G-eodes, M-codes, or T-codes. In such programs, 
all M-codes possess their usual meanings; no macros are called. 
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Program Number Parameter Number 

09020 6080 

09021 6081 

0 9022 6082 

09023 6083 

09024 6084 

09025 6085 

09026 6086 

09027 6087 

09028 6088 

09029 6089 

TABLE 7.2 Correspondence between Program 
Numbers and Parameter Numbers, for Macro Call 
Using an M-Code 

7.4 Subprogram Call without Using M98/M198 
M98 is the usual method of calling a subprogram. (M198 calls a sub­
program stored in an external input/ output device, such as Fanuc 
handy file, connected via the RS-232C port of the machine. Set param­
eter 0020 to 0, and parameter 0102 to 3, to enable such a subprogram 
call. If parameter 0020 is set to 4, M198 calls a subprogram stored in 
the PCMCIA flash memory card, which is the simplest method on 
newer control versions, as a PCMCIA slot has now become a stan­
dard feature of the control. A different M-code, other than M198, can 
also be used for subprogram call, by storing the desired number, cho­
sen between 1 and 255, in parameter 6030. If the stored value is 0, 
M198 is used.) However, if the macro programming feature is enabled 
on the machine, it is possible to call up to nine subprograms using 
certain user-defined M-codes. It is also possible to call a subprogram 
using a T-code. Note that since subprograms are being called, no 
arguments can be specified for passing on initial data to the local 
variables of the called program, as in the case of the M98 call. All the 
rules, which apply to the M98 call, apply to these call methods also. 

Subprogram Call Using an M-Code 
Any number between 1 and 99,999,999 can be selected as an M-code 
number to call a subprogram. The maximum permissible nine num­
bers are stored in parameters 6071 through 6079. TheM-codes defined 
by these parameters call subprograms 09001 through 09009. The corre­
spondence between the program numbers and the parameter numbers 
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09001 6071 

0 9002 6072 

09003 6073 

09004 6074 

09005 6075 

09006 6076 

09007 6077 

09008 6078 

09009 6079 

TABLE 7.3 Correspondence between Program 
Numbers and Parameter Numbers, for 
Subprogram Call Using an M-Code 

M a c r o C a II 149 

is given in Table 7.3. As an example, if the subprogram 09001 is 
desired to be called by M100, parameter 6071 would need to store 
100. Thereafter, MlOO would become equivalent to M98 P9001. 
Though no arguments are allowed, the called subprogram can be 
repeatedly executed up to 9999 times, using an L-word. For example, 
M100 L5, which is equivalent to M98 P9001 L5, calls subprogram 
09001 five times in succession. 

There is a restriction that this method of subprogram call cannot 
be used in programs called by G-eodes (other than G65 I G66), M-codes 
(other than M98/ M198), or T-codes. In fact, in general, the methods of 
calling a macro/subprogram, using G-code/M-code/T-code, cannot 
be used in programs called by any of these methods. The G-eode/ 
M-code / T-code used in these programs are treated as ordinary codes 
with the original function. For example, if parameter 6071 contains 
3, M03 will call subprogram 09001. But, if M03 is again used in 09001, 
it would be treated as spindle start command. This "restriction" can 
be very advantageously used, as explained in the following example. 

If the spindle is rotating, the command to change the direction of 
rotation abruptly (counterclockwise to clockwise or vice versa) may 
cause excessive load on the spindle motor, due to inertia. Therefore, it 
may be desirable to insert M05, with a 5-second dwell, while switch­
ing between M03 / M04. By storing 3 in parameter 6071, and defining 
09001 in the given manner, M03 used in any program (the main pro­
gram, a subprogram called by M98/ M198, or a macro called by G65 / 
G66, that is, a program not called by G-code / M-code/T-code) will 
first stop the spindle, and dwell for 5 seconds, before starting clock­
wise rotation. Thus, M03 gets modified to have a similar but extended 
function. 
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09 0 01 ; (The program number corresponding to parameter number 
6071, as per Table 7.3) 

MO 5 ; (Spindle stop) 
G04 X5; (Dwell for 5 seconds, to allow the spindle to stop completely) 

M03; (This M-code is an ordinary M-code, with its predefined 
meaning. So, clockwise rotation would start) 

M9 9 ; (Return to the calling program) 

M04 also can be modified in a similar manner, by storing 4 in 
parameter 6072, and defining 09002 in the given manner. 

09002; (The program number corresponding to parameter number 
6072, as per Table 7.3) 

MO 5 ; (Spindle stop) 

G04 X5 ; (Dwell for 5 seconds, to allow the spindle to stop completely) 

M04; (This M-code is an ordinary M-code, with its predefined mean­
ing. So, counter-clockwise rotation would start) 

M9 9 ; (Return to the calling program) 

The only drawback of the modified M03/M04 code is that even 
when the spindle is stationary, that causes a dwell of 5 seconds. How­
ever, in comparison with the total machining time of a job, this much 
delay can be ignored. 

Subprogram Call Using a T-Code 
This method is not permitted, unless parameter 6001#5 is set to 1. 
Using this method, only one subprogram 09000 can be called. Any 
number between 1 and 99,999,999 can be selected for the T-code (i.e., 
T1 through T99999999 are permitted). After the execution of the T­
code, the specified T-code number automatically gets stored in the 
common variable #149 (which may or may not be used) . For example, 
if T20 is used to call the subprogram, #149 would store 20. 

There are several limitations of this method. First, only one sub­
program (09000) can be called. Secondly, no parameters can be spec­
ified in the T-code block (since it is a subprogram call). However, up 
to 9999 repetitions are possible through an L-word. Note that this 
method disables the tool change function of the T-code in the main 
program, in a subprogram called by M98/ M198, and in a macro 
called by G65/G66. For example, T0101 (which is same as T101) will 
not change the tool (with or without M06); it will simply call 09000, 
as a subprogram. (Irrespective of the number used in the T-code, only 
09000 is called. If 09000 is not defined, the "NUMBER NOT FOUND" 
alarm would occur.) However, as already stated, in a program called 
by G-eode (other than G65 / G66), M-code (other than M98/M198), or 
T-code, the T-code is treated as an ordinary code with the usual tool 
change function. This feature can be used to modify the tool change 
function of a T-code, as explained in the following text. 
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It is dangerous to change the tool unless the turret is at the home 
position, because of a possible interference between the rotating tools 
and the chuck/ workpiece I tailstock. Therefore, G28 UO WO command 
must be given before issuing a tool change command. If a program­
mer forgets to do this, it may cause an accident on the machine. It is, 
however, possible to redefine the tool change command, to send the 
turret to the home position automatically, before changing the tool. 
First set parameter 6001#5 to 1, and then define 09000 in the given 
manner. Then, T0707 (say) in the calling program will bring tool 
number 7 to the cutting position, choosing offset number 7, after 
sending the turret to the home position. 

09000; 

G28 UO WO ; 

T#l49; 

M99; 

(The permitted program number for calling a subpro­
gram, using aT-code) 
(Home position return) 
(This is the usual tool change command, with offset num­
ber. #149 stores the number used with the T-code in the 
calling program. So, the specified T-code is executed here 
with the usual tool change function) 
(Return to the calling program) 

By now, it should be clear that the purpose of redefining the exist­
ing G-eodes, M-codes, and T-codes is to incorporate extended func­
tions into them. This feature should never be used to change the basic 
meaning of any code. Always use an unused number for defining 
codes with new functions . 

As another example, one may try to redefine G01, such that if the 
specified feedrate is more than 100 mm/ min for tool number 7, the 
feedrate used in linear interpolation would be 100 mm/ min only. 
(This is an arbitrary requirement, for the sake of illustration only.) 
Such a macro, however, cannot be written unless one fully knows the 
methods of argument specification. Therefore, this example will be 
taken up in the next section, with the additional purpose of explain­
ing the use of argument specification. 

7.5 Argument Specification 
In a macro call, certain letter addresses can be used for passing on the 
desired initial values to the local variables of the called macro. This is 
called argument specification. Two methods of argument specifica­
tion are available: 

• Argument specification I, which uses all the letters of the 
alphabet, except L, 0, N, G, and P, once each. 

• Argument specification II, which uses A, B, and C once each, 
and also uses I, J, and K up to 10 times each. 
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The type of argument specification is determined automatically 
according to the letters used. 

Argument Specification I 
This type of argument specification can define variables #1 through 
#26, except #10, #12, #14, #15, and #16. Variables #27 through #33 can­
not be defined. The correspondence between the letter addresses and 
the variable numbers is given in Table 7.4. The prohibited letter 
addresses can be easily remembered by the phrase "LONG Program." 

As an example of argument specification I, G65 P8000 L2 AlO D20 
H30 140 MSO Q60 Z70 would call program number 08000, as a macro, 
with its local variables initially set as #1 = 10, #7 = 20, #11 = 30, #4 = 40, 
#13 = 50, #17 = 60, #26 = 70, and the remaining local variables set to 
null. The word L2 would cause two successive executions of the 
macro, before returning to the calling program. However, as already 
discussed in Sec. 7.3, in the second execution (as well as in all the sub­
sequent executions, if the L-word has a value greater than 2), the local 
variables do not use the specified values in the G65 block as their 
initial values. Instead, the updated values in the first (previous) execu­
tion are used as initial values in the second (subsequent) execution. 

Since the CNC uses the word address format, the arguments of 
G65/G66, including P-word and L-word, can be specified in any 
order (but no argument should appear to the left of G65/G66). How­
ever, I, J, and K, if used, must be specified alphabetically. Hence, for 
example, ... K_ I_ ... must be replaced by ... I_ K_ ... , otherwise it 

Address Variable Number Address Variable Number 

A #1 Q #17 

B #2 R #18 

c #3 s #19 

D #7 T #20 

E #8 u #21 
f---- ......... ·----·-·--·-------·-·---

F #9 v #22 

H #11 w #23 

I #4 X #24 

J #5 y #25 

K #6 z #26 

M #13 

TABLE 7.4 Correspondence between Letter Addresses and Variable 
Numbers in Argument Specification I 
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would be interpreted in argument specification II, changing the 
meaning completely. 

Argument Specification II 
Argument specification II uses A, B, and C once each. Apart from 
these three letters, it uses I, J, and K up to 10 times each (i.e., 10 inde­
pendent sets of I, J, and K are used) . Thus, it can pass initial values to 
all the 33 local variables. The correspondence between the letter 
addresses and the local variables is given in Table 7.5. Note that I

1 

through I10, J1 through Iw and K1 through K
10 

are written, respectively, 
as I, J, and K only in the macro-calling block. We use the subscripts 
(which indicate the set number: set 1 through set 10) for our reference 
only. The control identifies the subscript (set number) according to 
the sequence in which the letter addresses appear. For example, if I 
appears 4 times in the argument list, the first occurrence means I

1
, the 

second occurrence means 12, the third occurrence means I3' and the 

Address Variable Number Address Variable Number 

A #1 16 #19 
·---·-----

B i #2 J6 #20 ! 

c #3 K6 #21 

11 #4 17 #22 

Jl #5 J7 #23 

Kl ' #6 K7 #24 

12 #7 18 #25 

J2 #8 JB #26 

K2 #9 KB #27 

13 I #10 19 #28 

J3 #11 J9 #29 

K3 #12 Kg #30 

14 #13 110 #31 
--

J4 #14 J10 #32 

K4 #15 K1o #33 

15 #16 

J5 #17 

Ks #18 

TABLE 7.5 Correspondence between Letter Addresses and Variable 
Numbers in Argument Specification II 
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fourth occurrence means I
4

, referring to variables #4, #7, #10, and #13, 
respectively. 

I, J, and K, corresponding to a particular subscript, always appear 
in the same sequence. In other words, these three always appear as an 
ordered set. All three entries of a set need not be defined. For exam­
ple, I_ J_ I_ K_ K_ L means I

1
_ ]

1
_ I

2
_ K

2
_ K

3
_ ]

4
_ where K

1
, ]

2
, I3' J3' I

4
, 

and K
4 
are not defined. If we use brackets to separate the sets, it would 

appear as (I_ L) (I_ K_) (K_) G_), where the brackets indicate different 
sets, the set number increasing from left to right, starting from 1. Note 
that the J next to K

3 
has to be ]

4 
because K

3
marks the end of the third 

set, after which the fourth set starts. 
The advantage of argument specification II is that all the 33 local 

variables can be assigned initial values. In addition, since I, J, and K 
appear in a group, this method of argument specification is very con­
venient for passing data such as three-dimensional coordinates. 
However, argument specification I is more commonly used because 
of its simplicity and easy interpretation of letter addresses. For exam­
ple, if data for depth of a hole, spindle speed, and feedrate are to be 
passed on, D, S, and F letters can be used in argument specification I, 
whereas any three among A, B, C, I, J, and K would have to be used 
in argument specification II. Obviously, the first type is preferable 
because it is easy to recall which letter address refers to what. 

Mixed Argument Specification 
Mixture of argument specification I and argument specification II is 
permitted, though it is not advisable because it may cause confusion. 
Note that if only A, B, C, I, J, and K are used, these refer to variables 
#1 through #6 in both the argument specification methods. When a 
letter other than these six appears, it is interpreted in argument spec­
ification I. On the other hand, if any letter among I, J, and K gets 
repeated (or a different order is used, such as I, K, and J), it is inter­
preted in argument specification II. If, by chance, the same variable is 
referred to by two letters (using the two methods), the one specified 
later in the argument list is used to pass the value. 

As an example, G65 P8000 L2 E10 J20 J30 ]40 HSO K60 K70 F80, 
which calls program number 08000 twice, uses mixed argument 
specification. Therefore, the arguments are interpreted left to right, 
as indicated in Table 7.6. As a result, variables #8, #5, #11, #12, #15, 
and #9 are assigned 30, 20, 50, 60, 70, and 80, respectively. 

It must always be kept in mind that I, J, and K appear as a set, in 
the same sequence. If any of these gets repeated, or appears in a dif­
ferent sequence, it belongs to a different set. Therefore, in the given 
example, the three Js refer to ]

1
, ]

2
, and J3' respectively (left to right), 

and the K after J3 would be~' because only K3' I4, and ]4 can appear 
next to J

3 
(in argument specification II). Following similar logic, verify 

the following: 
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G65 PSOOO L2 E10 J20 J30 J40 HSO K60 K70 FSO 

Argument Referred Assigned 
Argument Specification Type Variable Value Comment 

E10 
Argument #8 10 
specification I 

J20 
Both specifications #5 20 
equivalent 

J30 
Argument #8 30 Overwrites 
specification II (J) old value 

J40 
Argument #11 40 
specification II (J3) 

H50 
Argument #11 50 Overwrites 
specification I old value 

K60 
Argument #12 60 
specification II (K

3
) 

K70 
Argument #15 70 
specification II (K

4
) 

F80 
Argument #9 80 
specification I 

TABLE 7.6 Example of Mixed-Type Argument Specification 

1. Argument specification: ElO K60 J20 J30 J40 H50 K60 K70 
F80 

Variable assignment: #6 = 60, #8 = 20, #9 = 80, #11 = 50, 
#14 = 40, #15 = 60, #18 = 70 

2. Argument specification: B20 A10 D40 J50 K60 

Variable assignment: #1 = 10, #2 = 20, #5 = 50, #6 = 60, 
#7 = 40 

3. Argument specification: B20 A10 D40 K60 ]50 

Variable assignment: #1 = 10, #2 = 20, #6 = 60, #7 = 40, 
#8 =50 

4. Argument specification: 110 110 110 110 D40 K60 ]50 

Variable assignment: #4 = 10, #7 = 40, #10 = 10, #13 = 10, 
#15 = 60, #17 =50 

An Example of a G-Code Macro Call with Arguments 
Having discussed the methods of argument specification, we are now 
in a position to write a macro for redefining G01, a problem that was 
introduced at the end of Sec. 7.4. For redefining G01, one would need 
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to store 1 in parameter number 6051 (or in some other parameter in 
the range 6050 to 6059). The macro corresponding to parameter 6051 
is 09011 (refer to Table 7.1). Therefore, whenever G01 (or G1) is com­
manded in a program (main program, a macro called by G65 /G66, or 
a subprogram called by M98/M198), 09011 would be called as a 
macro. Now, the next task is to write the macro 09011. 

A general format for G01, for calling the macro, would be used: 
G01 X_ Y _ Z_ F _ S_, where the letter addresses would have their usual 
meanings. Since argument specification I has been used, the macro 
call would initialize local variables #24, #25, #26, #9, and #19, corre­
sponding to the used letter addresses (X, Y, Z, F, and S, respectively) . 

Refer to Table 3.10(b) for the meanings of the system variables 
used in program 09011 . To keep things simple, it would be assumed 
that the macro is being called in the constant rpm mode (G97). The 
constant surface speed mode (G96) is rarely used on a milling 
machine, though it is very useful and often used on a lathe. 

Though any local and / or common variable can be used to store 
the results of intermediate calculations, it is better to use common 
variables only, because local variables are used for passing data to the 
macro. This will reduce the possibility of programming errors. More­
over, a subsequent modification in the macro, to include additional 
data to be passed on to the macro, would be easy, as any local variable 
(which has not been used previously to pass data) can be made use of 
for storing the additional data. Otherwise, the total number of avail­
able common variables is also much more than the number of local 
variables. Finally, if the result of a calculation needs to be stored per­
manently (i.e., to be retained even after system reset or a power cycle), 
it would need to be stored in a permanent common variable. This 
methodology will be used in all the programs that follow from now 
onward. 

Before trying to write the macro, it is recommended to first write 
down the step-by-step procedure in plain English. This would sim­
plify program coding to a great extent. Skipping this step is like writ­
ing equilibrium equations without making free-body diagrams in an 
engineering mechanics problem! In fact, if the macro involves a com­
plex logic, a proper flowchart of the algorithm should be made, and 
its execution trace be analyzed. Unless one separates the logic from 
the language, macro programming will appear very difficult, which 
it is not. This approach was recommended in Chap. 5 also. It is being 
reemphasized here because it is very important. 

The algorithm, which has been used in macro 09011, is given below: 

1. Find out whether G94 or G95 is active at the time of calling 
the macro. 

2. Find out whether G20 or G21 is active at the time of calling 
the macro. 
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3. Find out the feedrate active in the block, immediately preced­
ing the macro calling block. 

4. If the G01 block does not contain an F-word, use the feedrate 
obtained in the previous step. 

5. Find out the rpm at the time of calling the macro (i.e., in the 
immediately preceding block). 

6. If the G01 block does not contain an S-word, use the rpm 
obtained in the previous step. 

7. Find out the tool number. 

8. If the tool number is not 7, go to step 13. 

9. Specify the maximum permissible feedrate (F maJ in millimeters 
per minute. 

10. Convert F max to be in millimeters per revolution, if G95 is 
active, using the formula 

feed per minute = feed per revolution x rpm 

11. Convert F max to be in inches per minute or inches per revolu­
tion, if G20 is active, by dividing it by 25.4. 

12. If the specified / previous feedrate is greater than F max' use F max 

as the feedrate . 

13. Execute linear interpolation with specified / previous values 
of X, Y, Z, and S, and appropriate value of F. 

14. Return to the calling program. 

Look into macro 09011 only after clearly understanding the logic 
used in the given algorithm. Thereafter, it is only a matter of convert­
ing the algorithm into codes. 

Recall that a G-eode inside a macro, which is called by a G-eode 
(whether same or a different code), is treated as a standard G-eode, 
with its predefined meaning. Therefore, in step 13 of the macro called 
by G01, GOl is interpreted as linear interpolation. In addition, if a 
particular letter address has a null value, that word is ignored in exe­
cution. For example, GOO X10 Y#1 is equivalent to GOO X10, if #1 is 
null. Therefore, in step 13, using G01 with X, Y, and Z addresses will 
not cause any problem, even if a value is not assigned for some axis. 
The general format for calling this macro is G01 X_ Y _ Z_ F _ S-' where 
not all the letter addresses need to be used. 

09011 (REDEFINES G01 ON MILLING MACHINE) ; 

#1 00 = #4005; (Stores 94 or 95, corresponding to G94 
and G95, respectively, whichever was 
active at the time of calling the macro. 
This information is needed because one 
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#101 #4006; 

#102 #4109; 

IF [#9 EQ #0] THEN #9 

#103 #4119; 

must know whether the specified feedrate 
in the macro-calling block is in feed per 
minute or feed per revolution. Step 1 
complete) 
(Stores 20 or 21, corresponding to C20 and 
C21, respectively, whichever was active at 
the time of calling the macro. This infor­
mation is needed because one must know 
whether the specified distances are in 
inches or millimeters. Step 2 complete) 
(Stores the active feedrate up to the previ­
ous block. This information would be 
needed if COl is commanded without an 
F-word. In such a case, the last specified 
feedrate would be used. Step 3 complete) 

#102; 

(The last specified feedrate being used, in 
the absence of an F-word in the COl block. 
Step 4 complete) 
(Stores the spindle rpm at the time of call­
ing the macro. This information would be 
needed if COl is commanded without an 
S-word. In such a case, the current rpm 
would be used. Note that this macro has 
been designed to be called in the constant 
rpm mode, i.e., when C97 is active. In C96 
mode, certain changes would need to be 
done. However, C96 is rarely used on 
milling machines. Step 5 complete) 

IF [#19 EQ #0] THEN #19 = #10 3 ; 
(The current spindle rpm being used, in 
the absence of an S-word in the COl block. 
Step 6 complete) 

# 10 4 = # 412 0 ; (Stores the current tool number, to check 
if it is tool number 7. Step 7 complete) 

IF [ #104 NE 7] GOTO 10; (If the current tool is other than tool num­
ber 7, jump to sequence number NlO, to 
execute COl without changing the fee­
drate. Step 8 complete) 

#105 100; 

IF [#100 EQ 95] THEN 

(Specify the maximum permissible fee­
drate, in millimeters per minute, for tool 
number 7. Step 9 complete) 

#105 = #105 I #19; 
(Maximum permissible feedrate con­
verted to be in feed per revolution, for use 
in C95 mode. Step 10 complete) 

IF [#101 EQ 20] THEN #105 = #105 I 25.4; 
(Converts the maximum permissible fee­
drate to be in inches per minute or inches 
per revolution, if the program is in C20 
mode. Step 11 complete) 
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IF [#9 GT #105] THEN #9 = #105; 

(Specified/ previous feedrate clamped to 
the maximum permissible value. Step 12 
complete) 

N10 G01 X#24 Y#25 Z#26 F#9 S#19; 

M99; 

(Linear interpolation with specified/ 
previous values of X, Y, Z, and S, and 
appropriate value of F. Step 13 complete) 
(Return to the calling program. Step 14 
complete) 

Program 09011 given here is for milling machines. For a lathe, it 
would need to be modified to delete the Y-word. Moreover, apart from 
X and Z, U and W are also used on a lathe. Hence, the program for a 
lathe would need to be called by COl X_ Z_ U_ W_ F_ S_. One can 
store 1 in parameter 6052 (say), and define the corresponding program 
09012, for redefining COl. Refer to Table 3.10(a) and Table 3.11 for 
information about the system variables used in this program. 

The algorithm is similar to that used in program 09011, except 
that 09012 takes care of constant surface speed (C96) mode also, for 
calculating the rpm that is needed in the formula relating feed per 
minute to feed per revolution, for use in C99 mode. Note, however, 
that the feedrate would be clamped (if needed) only in the beginning 
of the linear interpolation move. If feed per revolution (C99) mode is 
also active in C96 mode, the feedrate (feed per minute) would increase 
if the cutting diameter decreases while executing linear interpolation 
(e.g., in facing or taper turning) . The given macro has no control over 
such a varying feedrate. It will only check the feedrate in the begin­
ning of the move. 

The rpm (N) is related to the constant surface speed (CSS) and the 
cutting diameter (0), which is same as the current X-position of the 
tool, by the following formula: 

N = lOOOxCSS 
n x O 

where CSS is in meters per minute and 0 is in millimeters and 

N = 12xCSS 
n x O 

where CSS is in feet per minute and 0 is in inches. 
The algorithm used in macro 09012 is given below, followed by 

the program: 

1. Find out whether C98 or C99 is active at the time of calling 
the macro. 

2. Find out whether C20 or C21 is active at the time of calling 
the macro. 
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3. Find out the feedrate active in the block, immediately preced­
ing the macro calling block. 

4. If the GOl block does not contain an F-word, use the feedrate 
obtained in the previous step. 

5. Find out the S-word value active in the immediately preced­
ing block. 

6. If the G01 block does not contain an S-word, use the value 
obtained in the previous step. 

7. Find out the tool number, using FIX[T-code value/100], which 
extracts the left-most two digits from the four-digit (can be a 
three-digit number also) T-code value. For example, 0102 
(corresponding to T0102) would give 01, as the current tool 
number. 

8. If the tool number is not 7, go to step 15. 

9. Find out whether G96 or G97 is active at the time of calling 
the macro. 

10. Find out the rpm at the time of calling the macro (i.e., in the 
immediately preceding block). In G97 mode, it would be 
equal to the S-word value. In G96 mode, calculation using the 
given formula would be needed. 

11. Specify the maximum permissible feedrate (F maJ in millime­
ters per minute. 

12. Convert F max to be in millimeters per revolution if G99 is 
active, using the formula 

feed per minute = feed per revolution x rpm 

13. Convert F max to be in inches per minute or inches per revolu­
tion, if G20 is active, by dividing it by 25.4. 

14. If the specified/previous feedrate is greater than F max' use F max 

as feedrate. 

15. Execute linear interpolation with specified/previous values 
of X, Z, U, W, and S, and appropriate value of F. 

16. Return to the calling program. 

09012 (REDEFINES G01 ON LATHE) ; 

#100 = #4005; (Stores 98 or 99, corresponding to G98 
and G99, respectively, whichever was 
active at the time of calling the macro. 
This informa tion is needed because one 
must know whether the specified feedrate 
in the macro calling block is in feed per 
minute or feed per revolution. Step 1 
complete) 
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(Stores 20 or 21, corresponding to G20 and G21, 
respectively, whichever was active at the time of 
calling the macro. This information is needed 
because one must know whether the specified 
distances are in inches or millimeters. Step 2 
complete) 
(Stores the active feedrate up to the previous 
block. This information would be needed if GOl 
is commanded without an F-word. In such a 
case, the last specified feed-rate would be used. 
Step 3 complete) 

IF [#9 EQ #0] THEN #9 = #102; 

#103 #4119; 

IF [#19 EQ #0] 

(The last specified feedrate being used, in the 
absence of an F-word in the GOl block. Step 4 
complete) 
(Stores the spindle rpm/CSS at the time of call­
ing the macro. This information would be 
needed if GOl is commanded without an S­
word . In such a case, the current rpm/CSS 
would be used. Note that when G97 is active, 
the S-word denotes rpm. In G96 mode, it rep-
resents CSS. Step 5 complete) 

THEN #19 = #10 3 ; 

(The current spindle rpm/ CSS being used, in the 
absence of an S-word in the GOl block. Step 6 
complete) 

#104 #4120; (Stores the four-digi t current tool code, to check 
if it is tool number 7) 

#104 FIX [#104 I 100]; 

(Extracts the tool number from the four-digit 
tool code. Step 7 complete) 

IF [#104 NE 7] GOTO 10; 

(If the current tool is other than tool number 
7, jump to sequence number NlO to execute 
G01 without changing the feedrate . Step 8 
complete) 

#106 = #4002; (Stores 96 or 97 depending on which one of G96 
and G97 is currently active. Step 9 complete) 

IF [#106 EQ 97]THEN #107 = #19; 

#108 #5041; 

(In G97 mode, the S-word contains rpm that 
gets stored in #107) 
(Stores the current tool position along the X­
axis. This equals the diameter being turned 
currently, i.e., at the time of calling GOl. Note 
that the turning diameter continuously 
changes in taper turning or facing. However, 
in the formula for calculating the rpm, in G96 
mode, the ini tial diameter, as obtained here, 
is used. As a result, even if the rpm continu­
ously changes in G96 mode while executing 
GOl, only the initial rpm is calculated) 
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#109 [ [1000 * #19] I [3 .14 159 * #108]]; 

(Intermediate calculation. Use of outer 
brackets ensures that the slash is always 
interpreted as the division operator, never as 
the mid-block skip symbol) 

IF [[#106 EQ 96] AND [# 101 EQ 21]] THEN #107 = #109; 

(#107 stores the rpm calculated in CSS and mil­
limeter modes) 

#110 [ [12 * #19] I [3 .14159 * #108]]; 

(Intermediate calculation. Use of outer brackets 
ensures that the slash is always interpreted as 
the division operator, never as the mid-block 
skip symbol) 

IF [[#106 EQ 96] AND [#101 EQ 20]] THEN #107 = #110; 

(#107 stores the rpm calculated in CSS and inch 
modes. Step 10 complete) 

#105 100 ; 

IF [#100 EQ 99] 

(Specify the maximum permissible feedrate, in 
millimeter per minute, for tool number 7. Step 11 
complete) 

THEN #105 = #105 I #107; 

(Maximum permissible feedrate converted to 
be in feed per revolution, for use in G99 mode. 
Step 12 complete) 

IF [#101 EQ 20] THEN #105 = #105 I 25.4; 

(Converts the maximum permissible feedrate to 
be in inches per minute or inches per revolu­
tion, if the program is in G20 mode. Step 13 
complete) 

IF [#9 GT #105]THEN #9 = #105; 

(Specified / previous feedra te clamped to the 
maximum permissible value. Step 14 complete) 

N10 G01 X#24 Z#26 U#21 W#23 F#9 S#19; 

M99 ; 

(Linear interpolation with specified / previous 
values of X/ U, Z/ W, and S, and appropriate 
value of F. Step 15 complete) 
(Return to the calling program. Step 16 complete) 

The purpose of selecting this example was not just to write a macro 
for a specific application. (In fact, one may never need to redefine COl on 
a machine.) This example makes it amply clear that a complex macro 
such as this, perhaps, cannot be correctly written without first writing 
the algorithm. However, once the algorithm is ready, what remains is the 
mechanical job of converting it into codes. Without adopting this 
approach, a new learner would, perhaps, never be able to master macro 
programming; even a seasoned programmer is likely to make mistakes. 

A few more things remain to be discussed, though these are not 
directly related to the topic of this chapter. They are, however, dis­
cussed here because these do not merit a separa te chapter, and this 
is the last chapter dealing with the basics of macro programming. 
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7.6 Processing of Macro Statements 
It is first necessary to understand the concept of buffering during 
program execution, before discussing how macro statements are 
processed by the control. 

What Is Buffering? 
Though the execution of a program is block by block, the control pre­
reads the NC statement to be executed next, for smooth machining. 
The next NC statement is read and interpreted in advance, but exe­
cuted only after the execution of the previous statement is complete. 
If both are movement commands, the execution of the second com­
mand starts a little before the end point of the first command is 
reached, which results in slightly rounded corners. This small dis­
tance is called in-position width, which is specified in parameter 1827. 
For obtaining sharp corners, specify a small value in this parameter. 
Alternatively, on a milling machine, run the program in the exact stop 
mode, G6l. However, rounding the corners speeds up the execution, 
due to less deceleration/ acceleration effect, and, in most of the cases, 
very sharp corners are not needed. In radius compensation mode, 
two NC statements are read in advance, and if one of these is not a 
movement command in the plane of compensation, then one more 
NC statement is preread. Such a prereading operation is referred to as 
buffering. 

How Many Blocks Are Buffered? 
Up to three NC statements are buffered, depending on specific situa­
tions, though the blocks next to G31, MOO, MOl, M02, M30, and M-codes 
specified in parameters 3411 to 3420 are not buffered. However, the 
control tries to buffer as many macro statements as it can, during the 
execution of the current NC statement. 

When Are the Buffered Blocks Processed? 
As already mentioned, a buffered NC statement is processed (executed) 
after the execution of the current NC statement ends (or "nearly" ends). 
However, a macro statement is immediately processed, as soon as it is 
buffered. 

Processing of macro statements depends on how buffering is 
done by the control. There are four possible situations, in which buff­
ering is done differently. Processing of macro statements in these 
cases is described next, with the help of examples. 

Processing When the Next Block Is Not Buffered 
While executing certain M-codes and G31, the control does not buffer 
the next block. Therefore, if the next block contains a macro statement, 
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it is buffered and processed only after the completion of the process­
ing of the current block: 

N1 0 0 G31 X1 0 0; (The next block is not buffered because of G31) 

N1 01 #1 0 0 = 1; (#100 is set to 1, after the execution of G31 is complete) 

Processing in Radius Compensation Cancel (G40) Mode 
All the subsequent macro statements, up to the next NC statement, 
are read and immediately processed: 

NlOO G01 X100 F100; (While executing this block, buffering is done 
up toN104) 

N101 #100 1; (#100 is set to 1 while N100 is being executed) 

N102 #101 2; (#101 is set to 2 while N100 is being executed) 

N103 #102 3; (#102 is set to 3 while N100 is being executed) 

N104 Z100; (The next NC statement, after N100 block) 

N105 #103 = 4; (This macro statement is not buffered while 
N100 is being executed) 

Processing in Radius Compensation Mode (Case 1) 
For processing in radius compensation (G41/G42) mode, when the 
next two NC statements are movement commands, in the plane of 
compensation, all the macro statements, up to the second NC state­
ment after the currently executing NC statement, are read and 
immediately processed. (This example pertains to a milling machine, 
assuming that the plane of compensation is G17, i.e., the XY-plane.) 

NlOO G01 X100 F100; (While executing this block, buffering is done 
up to N106) 

N101 #100 = 1; (#100 is set to 1 while N100 is being executed) 

N102 #101 = 2; (#101 is set to 2 while N100 is being executed) 

N103 Y100; (The first NC statement, after N100 block) 

N104 #102 = 3; (#102 is set to 3 while N100 is being executed) 

N105 #103 = 4; (#103 is set to 4 while N100 is being executed) 

N106 X200; (The second NC statement, after N100 block) 

N107 #104 = 5; (This macro statement is not buffered while 
N100 is being executed) 

Processing in Radius Compensation Mode (Case 2) 
For processing in radius compensation (G41/G42) mode, when one 
(either one) of the next two NC statements is not a movement command, 
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in the plane of compensation, all the macro statements, up to the third 
NC statement after the currently executing NC statement, are read and 
immediately processed. (This example pertains to a milling machine, 
assuming that the plane of compensation is G17, i.e., the XY-plane.) 

N100 G01 X100 F100; (While executing this block, buffering is done 
up to N109) 

N101 #100 = 1; (#100 is set to 1 while N100 is being executed) 
N102 #101 = 2. (#101 is set to 2 while N100 is being executed) 
N103 Y100; (The first NC statement, after N100 block) 

N104 #102 3; (#102 is set to 3 while N100 is being executed) 

N105 #103 4; (#103 is set to 4 while N100 is being executed) 

N106 Z10; (The second NC statement, after N100 block. 
This statement does not cause movement in 
the plane of compensation) 

N107 #104 = 5; (#104 is set to 5 while NlOO is being executed) 
N108 #105 = 6; (#105 is set to 6 while NlOO is being executed) 
N109 X100 ; (The third NC statement, after N100 block) 
NllO #106 = 7· (This macro statement is not buffered while 

N100 is being executed) 

Finally, in radius compensation mode, if both the subsequent NC 
statements, after the currently executing NC statement, do not involve 
movement in the plane of compensation, this would result in incor­
rect compensation. The program must be modified to avoid this situ­
ation. However, for the sake of discussion, this case is equivalent to 
the previous case, with regard to buffering of macro statements (for 
example, if N103 YlOO is replaced by, say, N103 M08, buffering would 
still be done up to N109 only). 

Effect of Buffering of Macro Statements 
on Program Execution 
The purpose of buffering is to speed up the program execution by 
performing the calculations in advance. Normally, it only improves 
the performance of the machine, but there are situations when buff­
ering is not desirable, and it must be somehow suppressed. For 
example, assume that system variable #1100 (which corresponds to 
signal F54.0 in the PMC ladder diagram) has been used to operate 
an external device, connected to the output terminal YS.O (which 
can be located on the terminal strip of the input/ output module of 
the PMC), by adding the following rung to the existing ladder 
diagram: 

F54.0 YS.O 

t--1 1-1 1-------{ 

-- -------
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This rung would set the output device on or off, depending on the 
current status (1 or 0) of variable #1100. Now, if the requirement is to 
switch on the device somewhere in the middle of program execution, 
wait for 5 seconds, and then switch it off and restart the execution, one 
may insert the following blocks in the program, at the desired place: 

#1100 = 1; 

G04 XS; 

#11 0 0 = 0 ; 

Unfortunately, this would not work. The output would indeed be 
turned on, but while performing the dwell for 5 seconds, the next 
macro statement (#1100 = 0) would be buffered and immediately exe­
cuted, switching off the output instantly. Thus, even though the exe­
cution would dwell for 5 seconds, the output would switch on only 
momentarily. Therefore, in order to have the desired effect, it is neces­
sary to suppress buffering in this case. This can be very simply done 
by inserting a blank NC statement (a semicolon, the EOB symbol, is 
treated as a blank NC statement) after the G04 block: 

#110 0 = 1; 

G04 XS ; 

# 1100 = 0 ; 

Fanuc control does not define a G-eode to limit buffering to the 
desired number of blocks, unlike Haas control that has G103 for this 
purpose. However, as mentioned earlier, it is possible to define cer­
tain M-codes (in the range 0 to 255), for the sole purpose of preventing 
buffering of the following block. For example, if 100 is stored in any 
parameter in the range 3411 to 3420, M100 would prevent buffering of 
the following block. Then, instead of inserting a blank NC statement, in 
the previous example, M100 can be commanded. This method is better 
because a different programmer may consider the extra semicolon 
unnecessary, and may even choose to delete it! Note, however, that 
buffering should not be suppressed in radius compensation mode, 
because otherwise, the compensation would not be properly imple­
mented by the control, resulting in incorrect machining. 
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8.1 Introduction 

CHAPTER 8 
Complex Motion 

Generation 

So far, only the basic tools of macro programming have been discussed. 
With the help of these, it is possible to generate complex toolpaths, 
apart from several other applications that are discussed in subsequent 
chapters. Some examples of complex motion generation are given in 
this chapter. Generally speaking, it is easier to do it on a milling machine 
(in 2D machining), than on a lathe, because the generated toolpath 
would have to be used in conjunction with a suitable canned cycle 
(G71 / G72 / G73) on a lathe, to avoid large depth of cut. Therefore, mill­
ing examples are discussed first. 

8.2 Arc with Uniformly Varying Radius 
Consider the slot shown in Fig. 8.1, which is in the form of an arc 
(AB), with uniformly increasing radius. The start and the end radii 
are 35 mm (CA) and 40 rnrn (CB), respectively. The angle of arc is 60°, 
the start angle being 15°. The workpiece zero point (origin or datum 
of the chosen WCS, among G54, G55, ... , G59) is at 0. The center of 
the arc (C) is located at coordinates (30, 20). The depth of the slot is 
assumed to be 3 rnrn. 

Since the radius of the arc is continuously varying, circular inter­
polation cannot be used in this case. The only way is to locate closely 
spaced points on the arc AB, and join these by linear interpolation. 
The spacing between these points has to be carefully selected. A small 
value would improve the smoothness of the arc. However, too small 
a value would increase the calculations, which may result in sluggish 
tool movement. (Another and the main cause of the sluggish motion 
is that acceleration/ deceleration is involved in every tool path seg­
ment. Therefore, the effective feedrate might be much smaller than 
the specified feedrate .) 
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0 
N 

y 
Tool diameter 

Tool path 

~------------1-----------------------x 

0 30 

FIGURE 8.1 Arc with uniformly increasing radius. 

The coordinates of some point P on the arc (Xr, Yr), as a function 
of angle 9, can be found using the following equations, assuming the 
radius r changes withe in a uniform (linear) manner: 

(r6 -rA)e 
r=rA + LACB 

Xr=Xc+rcos(9+9A) 

Yr = Yc +rsin(9+9A) 

where rA = CA (start radius) 
r8 = CB (end radius) 

LACB = included angle of the arc 
e A= angle of CA with the X-axis (start angle) 
Xc = X-coordinate of the arc center C 
Y c = Y-coordinate of the arc center C 

At the start point of the arc (A), the value of e is zero. Thereafter, it 
gradually increases to reach the end point (B). This forms the basis of 
an algorithm for this problem. 

The first step in developing an algorithm for the macro is to decide 
how to use the macro. Here, it is assumed that the tool is 2 mm above 
the start point of the arc (A) at the time of calling the macro, and it comes 
back to the same Z-level at the end point of the arc (B) when execution 
of the macro ends. It is also assumed that the calling program uses 
millimeters, (G21), the XY-plane (G17), feedrate in millimeters per 
minute (G94), absolute coordinates (G90), no radius compensation 
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(G40), and no active canned cycle (G80). It is further assumed that the 
correct tool (slotdrill of 6 mm diameter) is held by the spindle, and it 
is rotating with the correct rpm. Finally, the choice of WCS (say, G54) 
and tool length compensation (G43 H_) are assumed to be correct. 
With these assumptions, the macro cannot be said to be quite general, 
but the purpose here is to describe the technique of generating an arc 
with varying radius. The arc, of course, would be defined in terms of 
a number of variable parameters, making it quite general. Once the 
basic program is ready, it becomes easy to make it more general, as 
per requirement. In fact, it is not recommended to consider all the 
possibilities in the very beginning, as such an approach makes pro­
gramming difficult, leaving enough scope for logical errors. 

The parameters of the slot, the selected letter addresses for these, 
and the associated local variables, as per argument specification I (refer 
to Table 7.4), are given in Table 8.1. Since these letter addresses would be 
used for passing data in the G65 / G66 macro call, their choice should 
reflect their actual physical meanings, as much as possible. This would 
help in recalling which letter address refers to which parameter. In the 
present case, the first letters of the parameters have been chosen as letter 
addresses, except A and F, where it would not be possible. 

Now, the algorithm for this problem, suitable for WHILE_DO_ 
END loop, can be written (note that the specified condition is checked 
in the beginning of the loop, in a WHILE statement): 

1. Make a plunge entry up to the specified depth, with the spec­
ified plunge feedrate . 

2. Choose the increment in angle, ~8, and assign 8 = ~8. 

3. If 8 is greater than the included angle of the arc, go to step 8. 

Selected Letter Associated 
Parameters of the Slot Addresses Variables 

Start angle A #1 

Included angle of the arc I #4 

Start radius s #19 

End radius E #8 
-

Depth of slot D #7 

X-coordinate of the arc center X #24 

Y-coordinate of the arc center y #25 

Plunge feedrate F #9 

Milling feedrate M #13 

TABLE 8.1 Parameters of the Slot of Fig. 8.1 and the Selected Letter Addresses 
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4. Calculate r, xp, and y P' using the given formula . 

5. Move to the calculated coordinates (Xr, Y r) by COl, with the 
specified milling feedrate. 

6. Increment angle (9 = 9 + ~9). 

7. Go to step 3. 

8. Retract the tool to 2 mrn above the workpiece. 

9. Return to the calling program. 

Program number 8014 is based on this algorithm. For making the 
slot of Fig. 8.1, this macro would need to be called by 

G65 P8014 A15 I60 S35 E40 D3 X30 Y20 F20 M60 ; 

where the plunge feedrate and milling feedrate are taken as 20 and 
60 mm/ min, respectively. 

08014 (ARC WITH VARYING RADIUS); 

G01 Z- [ABS [#7)) F#9; (Plungeentrywiththespecifiedplunge 
feedrate at the start point A. Use of 
ABS function accepts both positive and 
negative values for the depth of the 
slot. Step 1 complete) 

#100 = 0.1; (L-.8 selected, in degrees) 
#101 = #100; (8 set equal to L-.8. Step 2 complete) 
WHILE [#101 LE #4) DO 1; (Exitfromtheloopif8isgreaterthan 

the included angle of the arc. Step 3 
complete) 

#102 #19 + [ [#8 #19) * #101 I #4); 
(r calculated) 

#103 #24 + #102 * COS[#101 + #1); 

(Xr calculated) 
#104 #25 + #102 * SIN[#101 + #1); 

X#103 Y#104 F#13; 

#101 = #101 + #100; 

END 1; 

GOO Z2; 

M99; 

(Y r calculated. Step 4 complete) 
(Move to (Xr, Y p) with the specified 
milling feedrate. Step 5 complete) 
(Angle 8 incremented by the chosen 
step. Step 6 complete) 
(End of WHILE loop. Step 7 complete) 
(The tool is now at the end point B of 
the arc. Here, it is retracted to 2 mm 
above the workpiece. Step 8 complete) 
(Return to the calling program. Step 9 
complete) 

This macro would work for both increasing and decreasing radii 
(i.e., also when r A> r8) . However, for a clockwise arc (i.e., when posi­
tions of A and B get interchanged, and machining is still desired from 
A to B, in Fig. 8.1), the following changes would be needed : 
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• Specify a negative value for ~e (e.g., #100 = -0.1). 

• In the formula for r, the absolute value of e (which becomes 
negative when ~e is assigned a negative value) should be used. 
So, replace #101 by ABS[#101] in the block that calculates r. 
There would be no change in the blocks that calculate Xr and 
Yr. The other way would be to specify a negative value, in the 
macro-calling block, for the included angle if it measures in the 
clockwise direction, when moving from OA to OB. This would 
obviate the need for any change in the program. 

• The WHILE block should compare the absolute values. 

Modifying the macro for slightly different requirements is not a 
good practice, because a less experienced programmer may inad­
vertently spoil the macro developed meticulously by some expert 
programmer. Moreover, other users of the machine may not be 
aware of the changes made in the macro. In fact, it is because of this 
very reason that macros are usually edit-protected. 

In view of the foregoing discussion, it would be better to define 
one more local variable (say, #17 that refers to letter address Q) for 
passing the value of increment in angle (~9) to the macro, such that 
a positive increment value would make a counter-clockwise arc 
and a negative value would make a clockwise arc. Moreover, since 
there might be a confusion regarding the sign of the included angle, 
the macro should accept both signs. An advantage of passing the 
value of ~e is that the user of the macro can also control the smooth­
ness of the arc. Program number 8015 is one such macro that can be 
called by 

G65 P8015 A15 I60 535 E40 D3 X30 Y20 F20 M60 Q-0.1; 

or 

G65 P8015 A15 I-60 535 E40 D3 X30 Y20 F20 M60 Q-0.1; 

for a clockwise arc. The readers may try to make the macro more gen­
eral to suit specific applications. Once the core of the program is 
ready, modifying it is not a big deal, as can be seen in the present case 
where 08014 has been modified to 08015. 

08015 (ARC WITH VARYING RAD - MODIFIED) ; 

G01 Z-[AB5[#7]] F#9; (Plunge entry with the specified plunge 
feedrate at the start point A. Use of ABS 
function accepts both positive and nega­
tive values for the depth of the slot. Step 1 
complete) 

#100 #17; (~8 set to the specified value in the Q-word, 
which can be both positive and negative, 
for CCW and CW arcs, respectively) 

#101 #100; (8 set equal to ~8. Step 2 complete) 
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WHILE [ABS[#101] LE ABS [#4]] DO 1; 

(Exit from the loop if the magnitude of e is 
greater than the magnitude of the included 
angle of the arc. ABS[#4] would accept both 
positive and negative values for the 
included angle. Step 3 complete) 

#102 #19 + [ [#8 - #19] * ABS[#101] I ABS [#4]]; 

#103 #24 + #102 

#104 #25 + #102 

(r calculated. ABS[#4] would accept both 
positive and negative values for the 
included angle) 

* COS[#101 + #1]; 
(Xr calculated) 

* SIN[#101 + #1]; 
(Y r calculated. Step 4 complete) 

X#103 Y#104 F#13; (Move to (Xr, Y r) with the specified milling 
feedrate. Step 5 complete) 

#101 = #101 + #10 0 ; (Angle e incremented by the specified step 
value. The angle actually gets decremented 
if the step value is negative, for a clockwise 
arc. Step 6 complete) 

END 1; 

GOO Z2; 

(End of WHILE loop. Step 7 complete) 
(The tool is now at the end point B of the 
arc. Here, it is retracted to 2 mm above the 
workpiece. Step 8 complete) 

M99; (Return to the calling program. Step 9 
complete) 

This macro would make the slot in one pass. If the depth of the slot 
is large, say, 10 mm, it may not be practical to mill it in one pass. If the 
maximum permissible depth of cut is, say, 3 mm, four passes would be 
needed (at, say, 3-, 6-, 9-, and 10-mm depths, respectively). Therefore, 
the next task is to take care of this requirement. One can make use of 
the logic used in the flowchart given in Fig. 6.2. The following steps 
would need to be incorporated in the algorithm given earlier: 

1. Move the tool to ZO position. 

2. If the specified/ calculated depth is more than 3 mm, then 

• Make an arc of 3-mm depth (incremental distance from 
the previous Z-level), using the algorithm of the previous 
program (this step would appear as a nested WHILE loop 
in this program). 

• After reaching the end point of the arc, retract the tool 
above the workpiece and bring it back to the start point of 
the arc, at the same Z-level, with rapid rate (GOO). 

• Now bring the tool to the previous Z-level (with rapid rate 
up to 1 mm above the previous Z-level, followed by feedrate 
in the last 1 mm travel). 
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• The slot milling in the previous pass reduces the required 
depth by 3 mm, so, set depth= depth- 3. 

• Loop back to step 2. 

3. Make the arc at the specified/ calculated depth (incremental 
distance from the previous Z-level). Another WHILE loop 
will be needed for this step. 

4. Retract the tool to 2 mm above the workpiece. 

5. Return to the calling program. 

Program number 8016 is based on this algorithm, which uses a 
two-level nested WHILE statement. It can be called by 

G65 P8016 A15 I60 S35 E40 D10 X30 Y20 F20 M60 Q-0 .1; 

or 

G65 P8016 A15 I-60 S35 E40 D10 X30 Y20 F20 M60 Q-0.1; 

for a clockwise arc of 10-mm depth. The machining would be done in 
four passes (once each at Z = -3,-6, -9, and -10 mm) 

08016 (VAR RAD ARC WITH ARBIT DEPTH) ; 

G01 ZO F#9; (Tool made to touch the workpiece at the 
start point of the arc. Step 1 complete) 

# 10 7 = ABS [ # 7) ; (Positive value of the specified slot depth 
in the macro calling block would be used 
further, which permits both positive and 
negative values in the macro calling 
block) 

WHILE [#107 GT 3] DO 1; (Step2startshere) 
G91 G01 Z-3 F#9; 

#100 #17; 

#101 = #100; 

(Plunge entry to 3 mm below the current 
Z-level, at the start point A, with the spec­
ified plunge feedrate) 

(~9 set to the specified value in the Q-word, 
which can be both positive and negative, 
for CCW and CW arcs, respectively. This 
block can be placed outside the loop also, 
i.e., before the WHILE_OO_ block, because 
#100 is not redefined by the loop) 

(9 set equal to ~9) 
WHILE [ABS[#101) LE ABS[ #4) ) DO 2; 

(Exit from the loop if the magnitude of 9 
is greater than the magnitude of the 
included angle of the arc. ABS[#4] would 
accept both positive and negative values 
for the included angle) 

#102 #19 + [ [#8 - #19) * ABS[#101) I ABS[#4)); 

(r calculated. ABS[#4] would accept both 
positive and negative values for the 
included angle) 
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#103 #24 + #102 * COS[#101 + #1); 
(Xr calculated) 

#104 #25 + #10 2 * SIN[#101 + #1); 

G90 X#103 Y#104 F#13; 

#101 = #101 + #100; 

END 2; 
#105 = #5043; 

GOO Z2; 

(Y r calculated) 
(Move to (XP' Y p) with the specified mill­
ing feedrate) 
(Angle e incremented/ decremented by the 
chosen step) 
(End of WHILE loop . Arc made) 
(The current absolute Z-coordinate of the 
tool stored in #105) 
(The tool is now at the end point B of the 
arc. Here, it is retracted to 2 mm above the 
workpiece) 

X(#24 + #19 * COS[#1)) Y[#25 + #19 * SIN[#1]); 
(Tool brought back to the start point A) 

z [ # 10 5 + 1) ; (Rapid to 1 mm above the previous Z-level) 
G01 Z#105 F#9; (Feed motion in the last 1-mm travel) 
#107 = #107 - 3; (Calculates the remaining depth of the 

slot, to be machined further) 
END 1 ; (Loop back to the start of step 2. Step 2 

complete) 
G91 G01 Z-#107 F#9; (Plunge entry to the final depth, at the start 

point A, with the specified plunge feedrate) 
# 10 0 = # 17; (D.6 set to the specified value. This state­

ment is redundant, because #100 is already 
defined) 

#101 = #100; (6 set equal to D.6) 
WHILE [ABS[#101) LE ABS(#4)) DO 3; 

(Exit from the loop if the magnitude of e 
is greater than the magnitude of the 
included angle of the arc. Since it is not a 
nested WHILE loop, one may choose to 
use even 1 or 2, in place of 3, as loop iden­
tification number) 

#102 #19 + ( (#8 #19) * ABS [#101) I ABS (#4)); 
(r calculated) 

#103 #24 + #102 * COS(#101 + #1); 
(Xr calculated) 

#104 #25 + #102 * SIN[#101 + #1); 
(Y r calculated) 

G90 X#103 Y#104 F#13; (Move to (Xr, Yr) with the specified 
milling feedrate) 

#101 = #101 + #100; (Angle e incremented/decremented by 
the chosen step) 

END 3; (End of WHILE loop. Arc made. Step 3 
complete) 

GOO Z2; (The tool is now at the end point B of the 
arc. Here, it is retracted to 2 mm above the 
workpiece. Step 4 complete) 

M9 9 ; (Return to the calling program. Step 5 
complete) 
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This program is quite general now, except that it assumes certain 
control conditions. It is left as an exercise for the users to make the 
macro suitable for any control conditions. The approach would be 
similar to that used in the macros of Chap. 7 (09011 and 09012). 
Moreover, the macro assumes that the maximum permissible depth 
of cut in a pass is 3 mm. A local variable can be used to supply this 
value to the macro. This is desirable because different cutting condi­
tions require different cutting parameters. The readers should try to 
do this also, which is pretty straightforward (just replace 3 by the 
chosen local variable at required places). 

An important point regarding the style of this program must be 
observed: the local variables, which were used for value assignment 
through the G65/G66 statement, have not been redefined inside the 
macro. The temporary calculation results have been stored in com­
mon variables. This practice reduces the possibility of errors in the 
macro that may require using the original specified values at several 
places. So, if the specified value of some local variable is to change, as 
per the logic of the macro, store it in some common variable, and use 
it instead of the local variable. The #107 = ABS[#7] statement does 
exactly the same thing, to take care of reducing the depth of the slot, 
after each pass. #7 has not been redefined. 

8.3 Helical Interpolation with Variable Radius 
Helical interpolation is available on three-axis milling machines, as 
an option. It is, basically, a circular interpolation only, superimposed 
with synchronized linear motion along the third axis, such that the 
drive motors for all the three axes reach the specified end point at the 
same time, while moving at uniform rate (though their speeds would 
be different from one another) . The specified feedrate is maintained 
along the projected toolpath on the plane of circular interpolation. 
Therefore, the feedrate along the linear axis would be (which is auto­
matically calculated by the control) 

.fi de d t length oflinear axis speo e 1ee ra e x :----"',:---:-:---:---
length of circular arc 

Obviously, the actual feedrate of the tool, that is, feedrate along the 
tool path, would be more than the specified feedrate. It would, in fact, 
be equal to 

~(feedrate along linearaxis)2 + (specifiedfeedrate)2 

On a three-axis milling machine, helical interpolation is possible 
along the X-, Y-, and Z-axes, corresponding to G19 (YZ-plane), G18 
(XZ-plane), and G17 (XY-plane), respectively. Helical interpolation 
along the Z-axis is shown in Fig. 8.2, which can be commanded as 
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X 

<Place the too l at the start po i nt S> 

Gl7 G03 X_ Y_ Z_ R_ F_ ; or G17 G03 X_ Y_ Z_ I J_ F_ ; 

where X_, Y_, Z_ =coordinates of the end point P 
R_ =radius of the helix / circular interpolation 

I_, J_ =X-, Y-coordinates of the axis of the helix with 
respect to the start point S 

F _ = feedrate along the projected toolpath on the XY-plane 

G03 generates a counter-clockwise helix, as in Fig. 8.2. Replace it 
by G02 for a clockwise helix. The direction of the helix (CW / CCW) is 
determined by the right-hand rule where the thumb points in the pos­
itive direction of the linear axis. Thus, if the tool path follows the direc­
tion of the the curled fingers, it is called a counter-clockwise helix. 

Helical interpolations along X- and Y-axes are done in a similar 
manner. (Note that the chosen orders of X_, Y _,and Z_ are only for our 
convenience in identifying the plane of associated circular interpola­
tion. The plane of circular interpolation is decided by G17 / Gl8 / Gl9. 
In the word address format, which the CNC machines use, the order of 
the arguments of a G-eode is not important, barring a few exceptions 
such as the order of 1-, J-, and K-word in the G65 / G66 argument list): 

Gl8 G02 / G03 X_ Z_ Y_ R_ F_; or G18 G02 / G03 X_ Z_ Y_ I_ K_ F_; 

Gl9 G02 / G03 Y_ Z_ X_ R_ F_; or Gl9 G02 / G03 Y_ Z_ X_ J_ K_ F_; 

z 

y 

Axis of helix~ 
Center of circular interpolation 

p 

End point 
of helix 

Synchronized 
displacement 
along the third 
axis 

Helical interpolation 

s 

Circular interpolation on XY-plane 

FIGURE 8 .2 Helical interpolation along Z-axis on a milling machine. 

End point of 
circular 
interpolation 
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There are two limitations of the built-in helical interpolation, 
described above: 

• The radius/ pitch of the helix cannot be varied. 

• The feedrate along the actual toolpath is more than the 
specified feedrate. 

We will now develop a macro, to do away with these limitations. 
However, for the sake of simplicity, the travel along the linear axis 
would be assumed to be occurring at a uniform rate, synchronized with 
angular displacement. In other words, the pitch would be assumed con­
stant, as in the case of the built-in helical interpolation. The radius 
would, of course, vary but the change in radius would be assumed to be 
at a uniform rate, with respect to angular displacement. Thus, the helix 
would be formed on the lateral surface of a right-angle cone. 

A macro with this feature can be used for thread milling of taper 
pipe threads, with a modification to introduce pitch instead of num­
ber of loops. This is left as an exercise for the readers. However, it is 
possible to use the given macro even without any modification­
one only has to calculate and then specify the number of turns 
(which can be in fraction also) by dividing the total depth (Z-travel) 
by pitch. 

Consider a helix with a constant pitch and uniformly varying 
radius, having the following characteristics: 

Number of loops (turns) 
Start radius 

End radius 
Total depth 
Plane of circular interpolation 
Linear axis 
XY-coordinates of helix axis 

Coordinates of the start point 

=T 

=Rl 

=~ 
=d 
=XY-plane 
= Z-axis 

= (Xo, Yo) 
= (X1, Y1, Z1) 

Start angle, with positive X-axis = 8
1 

Direction of toolpath = CCW 

The top view of such a helical toolpath is shown in Fig. 8.3, where 
four complete turns are shown, and the end radius is smaller than the 
start radius (though it does not affect the mathematical equation of 
the helix) . 

To have conformity with the way the built-in helical interpolation 
is used, the macro would be designed in such a manner that the start 
point of the helix would be at the current tool position, and the tool will 
remain at the end point of the helix in the end. In other words, the tool 
position at the time of calling the macro would automatically become 
the start point of the helix. This means that the center line (axis) of the 
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y 

An arbitrary 
point on helix 

Start angle 

FIGURE 8.3 Top view of helical interpolation with varying radius. 

helix automatically gets located if the start radius and the start angle 
are specified. Hence, its coordinates (X

0
, Y

0
) can be calculated. 

The first task is to mathematically generate the equation of the 
helix. For this, the parametric equation of an arbitrary point on the 
helix would need to be written, with angle 8 as a parameter: 

X0 = X1 - R1 cos81 

Y0 = Y1 - R1 sin81 

R(S)=R - RI- Rz 8 
1 360T 

X(S) = X0 + Rcos(81 +8) 

Y(S) = Y0 + Rsin(81 +8) 

d 
Z(S) = zl + 360T 8 

Now, the algorithm for this problem, suitable for WHILE_DO_END 
loop, can be written: 
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1. Determine the current tool position (X
1

, Y
1

, Z
1
), through 

appropriate system variable. 

2. Find out the XY-coordinates (X
0
, Y

0
) of the helix axis, using 

the given formulas. 

3. Use the specified increment in angle, ~8, and assign 8 = ~8 . 

4. If 8 is greater than 360T, go to step 9. 

5. Calculate R(8), X(8), Y(8), and Z(8), using the given formulas. 

6. Move to the calculated coordinates by COl, with the specified 
feedrate. 

7. Increment angle (8 = 8 + ~8) . 

8. Go to step 4. 

9. Return to the calling program. 

Program number 8017 is based on this algorithm, which uses the local 
variables given in Table 8.2. 

For helical interpolation with uniformly varying radius, this 
macro would need to be called in a manner such as 

G65 P8017 T10 S50 E4 0 D30 A45 Q1 F60; 

in the absolute mode, after placing the tool at the desired start point 
of the helix. Note that one need not necessarily be in G17 mode, as 
COl remains unaffected by G17 / G18 / Gl9. 

08017 (VAR RAD HELICAL INTERPOLATION); 

I F [ #19 LT OJ THEN #3000 = 1 (NEGATIVE START RADIUS); 

IF [#8 LT OJ THEN #3000 2 (NEGATIVE END RADIUS); 

IF [ #20 LT OJ THEN #3000 = 3 (NEGATIVE NUMBER OF TURNS); 

(Negative values for start radius, 
end radius, and number of turns 
are not allowed; these would 

Selected Letter 
Addresses 

Number of turns T I #20 

Start radius S I #19 

End radius E ; #8 
~--------------------~----------------+-----------

Total depth D I #7 ---------------------------·-------------·------ -------- --------·--·--·---------- --- ----r·-· ---- ------------- ----
start angle (with X-axis) A ! #1 

Increment in angle Q I #17 

Feed rate F I #9 

TABLE 8 .2 Parameters of Variable-Radius Helical Interpolation and the 
Selected Letter Addresses 
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#100 

#101 

#102 

#103 

#5041; 

#5042; 

#504 3 ; 

#100 - #19 * COS[#1]; 

#104 #101- #19 * SIN[#1]; 

#105 #17; 

#106 = #105; 

WHILE [ABS[#10 6] LE [360 * 

generate respective alarms with 
the specified messages. Number 
of turns can have a fractional 
value also. For example, T = 1.1 
refers to 396°) 
(Current X-position determined) 

(Current Y-position determined) 

(Current Z-position determined. 
Step 1 complete) 
(X-coordinate of helix axis calcu­
lated. Start angle can be negative 
also. It must be specified in degrees. 
Entire 360° range is permitted) 

(Y-coordinate of helix axis calcu-
lated. Step 2 complete) 
(~e set to the specified value, in 
degree, in the Q-word, which can be 
both positive and negative, for 
CCW and CW helices, respectively) 

(9 set equal to ~e. Step 3 complete) 
#20]] DO 1; 

(Exit from the loop if the magni­
tude of e is greater than the total 
traversed angle. Step 4 complete) 

#107 #19 - [ [#19 #8] * ABS[#106] I [360 * #20]]; 

(R(9) calculated) 

#108 #103 + #107 * COS [#1 + #106]; 
(X(9) calculated) 

#109 #104 + #107 * SIN[#1 + #106]; 
(Y(9) calculated) 

#110 #102 + [#7 * ABS [#106] I [360 * #20]]; 

G01 X#108 Y#109 Z#110 F#9; 

#106 #106 + #105; 

END 1; 

(Z(9) calculated. Both positive and 
negative values can be specified for 
the depth. A positive value moves 
the tool in the positive Z-direction, 
while going from the start point to 
the end point, whereas a negative 
value makes it move in the negative 
Z-direction. Step 5 complete) 
(Move to the calculate coordinate 
with the specified feedrate. Step 6 
complete) 
(Angle e incremented by the spec­
ified step value. The angle actually 
gets decremented if the step value 
is negative, which generates a 
clockwise helix. Step 7 complete) 
(End of WHILE loop. The tool 
stays at the end point of the helix. 
Step 8 complete) 
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(Return to the calling program. 
Step 9 complete) 

It is left as an exercise for the readers to modify this macro to 
make it suitable for both absolute and incremental modes. In fact, it is 
pretty simple: 

• In the beginning of the macro, read system variable #4003 to 
find out the mode (it stores 90 in absolute mode, and 91 in 
incremental mode) . 

• Replace COl by C90 COl in the macro, to force absolute mode. 

• Command C91 at the end of the macro, if the first step 
revealed incremental mode. 

The examples given above explain how a complex toolpath can 
be generated, if it is mathematically defined. There is no need to use 
a CAM software for such a requirement. Moreover, a CAM software 
may not provide as much flexibility as is possible with a macro. Some 
examples for a lathe are discussed next. 

A complication in turning applications is that the depth of cut 
must be limited to its maximum permissible value, for a given cutting 
condition. Hence, it is not possible to obtain a complex turned shape 
just by moving the tool along the generated boundary. One has to 
make use of C71/C72/C73, where the part boundary is defined 
between P- and Q-block numbers. If C71/C72 type II cycles are not 
available on a particular machine, C73 would have to be used wher­
ever the change in part diameter, along the axis of the part, is not 
monotonic. C71/C72 type I cycles require that there be monotonic 
increase or decrease in part diameter, along its axis. 

Two cases are discussed below: one with monotonic increase, and 
the other with nonmonotonic increase. The monotonic case may be 
considered suitable for C71, whereas the nonmonotonic case uses C73. 
However, as explained in the next section, C71 I C72 cannot be used for 
such applications. 

8.4 Parabolic Turning 
Reflectors are given parabolic shapes because a signal or light emit­
ted at its focus becomes parallel to its axis after reflection, which 
makes transmission possible over a long distance. Similarly, if it is 
used for receiving signals from a long distance (which are nearly par­
allel rays), a signal receptor placed at its focus receives strong con­
verging signals. Parabolic turning, however, is not a standard feature 
of a lathe, though it can be very easily done using a macro. 

Consider the geometry shown in Fig. 8.4.1t is assumed that the work­
piece has an initial bore, and the girth of the internal turning tool is small 
enough to enter the hole, without any interference. If not, a central hole of 
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suitable diameter would be required to be drilled first, before proceeding 
with parabolic turning. The method given here, however, cannot be 
directly used if the design does not permit existence of a central hole. In 
such a case, machining would have to be done using the pattern repeating 
cycle (G73) in facing operation (i.e., with radial relief= 0 and axial relief= 
as required), with a neutral facing tool. However, as a first approxima­
tion, a central hole can still be made, with a slotdrill, to have a flat surface 
at the bottom of the hole. The error introduced (the distance between the 
vertex of the parabola and the flat bottom) may be negligibly small. For 
example, it is 0.3175 mm for the dimensions given in Fig. 8.4. 

The first task is to derive a mathematical equation for the parabola. 
It can be shown that the general equation in terms of the maximum 
diameter (M), bore diameter (B), and the depth (D) is 

Workpiece 
(with preexisting bore 

of 1 0-mm diameter) 

FIGURE 8.4 Turning a parabola. 

X 

t 

--- z <i 
'6 
X 
<1l 
~ 

A parabola 

Depth, D (20) 

Final shape 
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One can verify that Z = 0 gives X= M, and Z = - D gives X= B. Note 
that this equation has been written in a form to suit diameter program­
ming on a lathe. For the dimensions given in Fig. 8.4, this equation 
reduces to 

X2 =315(Z+20.3175) 

However, instead of using this equation, the general format would be 
used in the macro. 

Machining of this type, both internal and external, which involves 
bulk material removal, is usually done by G71, the multiple turning 
cycle (also called the stock removal cycle, or simply the roughing cycle) or 
G72, the multiple facing cycle, as these are the most efficient cycles. So, 
one may think of using, say, G71, for machining, where the given 
equations would be used for defining the parabolic curve between P­
and Q-block numbers. (Note, however, that when the radial dimen­
sion of the material to be removed is more than its axial dimension, as 
in the present case where these values are 35 and 20 mm, respectively, 
G72 would be more efficient than G71.) An algorithm involving G71 
can be written in the following manner: 

1. Place the tool at the start point of G71. 

2. Command G71 and place the tool at the start point of the 
parabola, that is, at X= M and Z = 0. 

3. Use the specified axial step distance t1Z, and assign Z = -t1Z. 

4. If I z I is greater than D, which is I zmax I I go to step 9. 

5. Calculate X, using the given formula . 

6. Move to the calculated coordinates by GOl. 

7. Change the Z-coordinate (Z = Z- t1Z). 

8. Go to step 4. 

9. End of G71. 

10. Finish by G70 with half the specified feedrate, and twice the 
current rpm, for a better finish. 

11. Return to the calling program. 

Unfortunately, the technique described above does not work. 
This is because though G71 and G72 do allow loops between the P­
and Q-blocks, presence of a movement command in a loop is not 
allowed. Therefore, it is not possible to define the geometry of the 
part through a loop, for G71/G72. Moreover, even subprograms/ 
macros cannot be called from within G71/G72 cycles (M98 is ignored, 
and G65/G66 alarm out). G73, the pattern repeating cycle, does not 
have these limitations, but it would be a highly inefficient cycle for 
such applications, as it would be cutting in the air most of the time. 
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Hence, the only way, in such a case, is to simulate the roughing oper­
ation of G71 and G72 by calling G90 and G94, respectively, in a loop. 
The step-removal operation of G71/G72 can be simulated by moving 
the tool along the desired profile, defined as tiny straight line seg­
ments. An algorithm for simulating G72 (which is more efficient com­
pared to G71, for the given dimensions) is given below: 

Roughing Operation 
1. Place the tool at Z = 0, with 1 mm clearance from the hole, i.e., 

at X= B- 2. 

2. Assign Z =-<specified roughing depth of cut>. 

3. If I Z I is greater than D, go to step 9. 

4. Calculate X, using the given formula. 

5. Command G94, with the calculated coordinates and the spec­
ified feedrate as its arguments. 

6. Shift the tool axially, to the Z-level of the machined surface, 
which would be the start point of the next G94 cycle. 

7. Change the Z-coordinate (Z = Z - <specified roughing 
depth of cut>). 

8. Go to step 3. 

Step-Removal Operation 
1. Place the tool at the inner edge of the parabola, that is, at 

(B, -D). 

2. Assign Z =-D. 

3. If Z is greater than 0, go to step 16. 

4. Calculate X, using the given formula. 

5. Move to the calculated coordinates by GOl. 

6. Change the Z-coordinate (Z = Z + <specified step distance in Z> ). 

7. Go to step 11. 

8. Return to the calling program. 

Note that if the depth of the parabola is not an exact multiple of 
the specified step distance in Z, the tool will not exactly reach the 
outer edge of the parabola. This would leave a small kink at the edge. 
This can be removed by moving the tool by some distance along the 
tangential direction at Z = O.lt can be shown that the increments in X 
and Z, at Z = 0, are related by the following formula: 

t.X = M z - Bz t.Z 
2MD 
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Selected Letter 
Parameters of the Parabola Addresses Associated Variables 

Maximum diameter M #13 

Bore diameter B #2 

Depth of parabola D #7 
---

Step distance in Z Q #17 
------- -----1---

Roughing depth of cut R #18 

Feed rate F #9 

TABLE 8.3 Parameters of Parabolic Turning and the Selected Letter Addresses 

Thus, an additional tangential move, using the given formula, is 
desirable before returning to the calling program. 

Program number 8018 is based on this algorithm, using the local 
variables given in Table 8.3. The toolpath for this program is shown 
in Fig. 8.5. For the geometry given in Fig. 8.4, this program would 
need to be called in a manner such as 

GOO XO Z2; 

G65 P8018 M80 B10 020 Q0.1 R0.5 F60; 

The initial positioning of the tool at (XO, Z2) avoids a possible inter­
ference between the tool and the workpiece or the machine body, 
when the tool makes the first move inside the macro. Roughing is 
done at the current rpm and the specified feedrate, whereas finishing 
is done at twice the current rpm and half the specified feedrate. This 
gives a better surface finish. 

08018 (PARABOLIC TURNING WITH G9 4); 

#105 #5041; 

#106 #5042; 

GOO X[#2 - 2] ZO; 

#100 ABS[#17]; 

#101 = -#18; 

WHILE [ABS[#101] LE 

(Stores the initial X-position of the 
tool) 

(Stores the initial Z-position of the 
tool) 
(Tool placed at the start point of the 
first G94 cycle, leaving a clearance of 
1 mm in the radial direction. Step 1 
complete) 

(ABS function would accept both 
positive and negative values for step 
distance in Z) 

(The first step change in Z. Step 2 
complete) 

ABS[#7]] DO 1; 

(Exit from the loop if the entire depth is 
roughed out. Step 3 complete) 

------ -----
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X 

t 

Note: 
1. The sequence of tool path is numbered. 
2. Rapid motions: 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21 , 24. 
3. Feed motions: 2, 3, 6, 7, 10, 11 , 14, 15, 18, 19, 22, 23, 25, 26, 27. 
4. Toolpath 1 to 24, caused by executing G94 in a loop (along with a 

positioning move at the end of each G94 cycle) , simulates the roughing 
operation of G72 (without finishing allowances) , with the difference that the 
retractions (3, 7, etc.) are not at 45°. 

5. Toolpath 25 is a positioning move, after the completion of all G94 cycles. 
6. Toolpath 26 consists of very small straight-line path segments along the defined 

parabolic profile. It removes the steps that are nearly triangular in shape, created along 
the parabolic profile, by toolpath 1 to 24. Thus, it simulates the step-removal operation of 
G72. The accuracy of machining would, obviously, depend on the chosen value of 
Z-increment for generating tool path 26. 

7. Toolpath 27 is a straight-line move along the tangential direction, for removing a 
possible kink at the outer edge of the parabola. 

8. The final rapid move, to the position of the tool immediately before calling the macro, 
is not shown. 

F IGURE 8.5 Toolpath for turning a parabola . 

#102 [ [#13 * #13 * ABS[#7]] I [#13 * #13 - #2 * #2]]; 

(Intermediate calculation) 

#102 

#102 

#101 + #102; 

[[#13 * #13 

#102 SQRT[#102]; 

G94 X#102 Z#101 F#9; 

(Intermediate calculation) 

#2 * #2] I ABS[#7]] * #102; 
(Intermediate calculation) 

(X calculated. Step 4 complete) 

(Roughing with G94. Step 5 complete) 
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GOO Z#101; 

#101 = #1 01 - #18; 

END 1; 

#1 03 = #4119; 
G01 X# 2 Z [ - ABS [#7] ] F[ # 9 
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(Tool positioning for the next G94 
cycle. Step 6 complete) 

(Z decremented by the specified rough­
ing depth of cut. Step 7 complete) 
(End of loop. Step 8 complete) 
(Current rpm stored) 

I 2 ] S [#1 03 * 2 ] ; 

(Tool placed at the inner edge of the 
parabola. Step 9 complete) 

#101 = - ABS [ #7 ] ; (Z-coordinate of the inner edge of the 
parabola stored. Step 10 complete) 

WHILE [ # 101 L E 0 ] DO 1; (Exit from the loop if the outer edge 
of the parabola is reached. Step 11 
complete) 

#102 [ [#13 * #13 * ABS[#7]] I [# 13 * #13 - #2 * # 2 ]]; 

(Intermediate calculation) 
#1 02 #1 01 + #102 ; (Intermediate calcula tion) 

#102 [ [ #13 * #1 3 - #2 * #2 ] I ABS[# 7 ]] * #102 ; 

#102 SQRT [ #102] ; 

X#102 Z#101 ; 

#101 = #1 01 + #100 ; 

END 1; 

#104 = [ [# 13 * #13 - #2 * 

U# 1 04 W2 ; 

GOO X#105 Z#106 ; 

S#103 F#9; 

M99 ; 

(Intermediate calculation) 

(X calculated. Step 12 complete) 

(Linear interpolation to the calculated 
coordinates. Step 13 complete) 

(Z incremented by the specified step 
distance. Step 14 complete) 

(End of loop. Step 15 complete) 

#2] I [2 * #13 * ABS[#7] ] * 2 ] ; 

(Calculating LDC, corresponding to LiZ 
= 2 mm, at Z = 0) 

(Additional tangential move at the 
outer edge of the parabola for remov­
ing any possible kink) 

(Rapid move to the original tool 
position) 

(Original rpm and feedrate restored) 

(Return to the calling program. Step 16 
complete) 

Though the macro 08018 does not have the fea ture of finishing 
allowance of G72, it can be easily incorporated into it. One only has to 
subtract the desired X-finishing allowance from the calculated X-values, 
and add Z-finishing allowance to the calculated Z-values, in rough­
ing as well as in step-removal operations. Finally, the step-removal 
operation would be repeated without adding/ subtracting finishing 
allowances, with the same tool or a different tool, if desired. It is also 
possible to introduce two more local variables for passing the values 
for X- and Z-finishing allowances to the macro, through the macro­
calling block. It is left as an exercise for the readers to develop such a 
macro. 
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8.5 Turning a Sine Curve 
Consider the part shown in Fig. 8.6, which is to be machined from a 
cylindrical workpiece. The lateral surface of this part is defined by a 
sine curve. An additional complexity in this case is that the diameter 
of the part does not have monotonic increase or decrease along the 
length. The diameter first increases, then decreases and again 
increases, in the negative Z-direction. This makes the roughing oper­
ation by G90/G94 difficult to incorporate, which was easily done in 
the previous example of parabolic turning. Hence, the only way is to 
make use of G73 cycle. In fact, one simply has to define the geometry 
of the profile between P- and Q-block numbers of G73. 

As discussed earlier, this technique cannot be used with G71 and 
G72, because a loop cannot have movement G-eodes for defining the 
profile for G71/G72. G73, however, does not have this limitation. The 
only problem, in fact a serious one, with G73 is that it is very ineffi­
cient for this type of job, where most of the feed motion would be in 
air, wasting a lot of time. However, in the absence of a suitable 
method, one has to use G73 that will at least produce the correct part. 
Ideally, G73 should be used where the workpiece already has a pre­
formed shape, requiring nearly equal amount of material removal 
over its entire length, to get the exact shape. In other words, it is 
mainly suitable for machining of cast or forged parts, for which no 
other machining cycle would be as efficient. Every canned cycle has 
been designed with some specific purpose. 

We are using the terms cycle and canned cycle interchangeably. 
Broadly speaking, if a G-eode brings back the tool to its initial posi­
tion after machining, it is called a cycle. If a cycle also involves some 
calculations, it is usually referred to as a canned cycle. Thus, G90 is a 
cycle whereas G71 is a canned cycle. Fanuc manuals, however, refer 

A sine curve 

w 

FI GURE 8.6 Turning a sine curve. 
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to all cycles as canned cycles. For this reason we are not differentiat­
ing between the two terms in this text. 

Coming back to the original problem, an algorithm for turning a 
sine curve is given below: 

1. Place the tool at the start point of G73. 

2. Command G73 and place the tool at the start point of the sine 
curve, that is, at X = D and Z = 0. 

3. Use the specified axial-step distance !!,.Z, and assign Z = -/!,.2. 

4. If I z I is greater than W, which is I zmax I, go to step 9. 

5. Calculate X, using the equation of the sine curve: 

6. Move to the calculated coordinates by G01. 

7. Change the Z-coordinate (Z = Z- !!,.Z). 

8. Go to step 4. 

9. End of profile definition of G73. 

10. Finish by G70 with half the specified feedrate, and twice the 
current rpm, for a better finish . 

11. Return to the calling program. 

Program number 8019, which uses the local variables given in Table 8.4, 
is based on this algorithm. 

Axial relief has to be kept zero in the case being considered, as the 
geometry of the part requires that there be no axial shift in the subse­
quent cutting passes of G73 (because axial shift would result in inter­
ference between the toolpath and the part geometry. In fact, for the 
same reason, even the Z-finishing allowance for the G73 cycle has to 

Selected Letter Associated 
Parameters of the Sine Curve Addresses Variables 

Average diameter D ~#7 r--·· ··---· - ······ 

Wavelength of sine curve w #23 

Amplitude of sine curve A I #1 

Step distance in Z Q #17 
---.-·-

Roughing depth of cut R #18 

Feed rate F #9 

T ABLE 8 .4 Parameters of Sine Curve Turning and the Selected Letter Addresses 

www.EngineeringBooksPdf.com



190 C h a p te r E i g h t 

be kept zero in this case). In this example, the cutting passes are 
required to shift only in the radial direction, to gradually approach 
the defined profile. 

The radial relief in the present case can be chosen to be equal to 
the maximum depth of the "valley" (i.e., equal to 2A). However, with 
this radial relief, the first pass of G73 would only touch the workpiece 
at a location where the part has minimum diameter, without remov­
ing any material. Since it is desirable that material be removed even 
in the first cutting pass, radial relief should be taken equal to (2A­
<desired depth of cut>). 

Though the macro 08019 allows specification of roughing depth 
of cut, G73 does not use this information directly. Instead, one has to 
specify the number of cutting passes (R-word in the first block of 
G73), for the chosen radial / axial relief (U-word / W-word in the first 
block of G73), such that the resulting depth of cut is as desired. 

Recall that G73 offsets the first cutting pass, with respect to the 
defined profile (shifted by finishing allowances, if specified, along 
the corresponding directions), by the specified radial- and axial-relief 
amounts, in radial and axial directions, respectively. The last cutting 
pass exactly follows the defined profile (plus finishing allowances) . 
Since the total number of passes is the value specified in the R-word, 
there would be ( <R-value> - 2) intermediate passes. All the passes 
are automatically evenly spaced, and approach the last pass (i.e., the 
defined profile plus finishing allowances) gradually. Therefore, the 
spacing between two consecutive passes determines the depth of cut 
in a pass. 

The required number of passes (R-value), to ensure that the 
maximum depth of cut in each pass is equal to or smaller than the 
specified depth of cut, would be equal to 

radial relief + 1 
specified depth of cut 

Since, in general, this expression would evaluate to a real number, the 
next (higher) whole number should be specified as the R-value. Note 
that the actual depth of cut in the example being considered would 
not remain constant. It would vary between zero (where no cutting is 
involved) and the specified depth of cut (where the part has mini­
mum diameter). 

08019 (TURNING A SINE CURVE) ; 

#105 = #5041; 

# 1 06 = #5042; 

(Stores the initial X-position of the tool) 

(Stores the initial Z-position of the tool) 

GOO X [ #7 + 2 * #1 + 4] Z2 ; (Toolplaced atthe startpointofG73 
cycle, leaving a clearan ce of 2 mm in 
radial as well as axial direction, with 
respect to the workpiece. Step 1 
complete) 
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G73 U[2 * #1 - #18] WO 
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(ABS function would accept both 
positive and negative values for step 
distance in Z) 

R[FUP[ [ [2 * #1 - #18] I #18] + 1]]; 

G73 P1 Q2 U0.1 WO F#9; (X-finishing allowance chosen to be 
O.lmm) 

N1 GOO X[#7 + 4 ] ZO; 

G01 X#7 zo; (Tool placed at the start point of the 
sine curve. This motion has been split 
into two moves because the tool must 
approach the workpiece at feedrate, 
and a single feed motion would 
waste a lot of time. Modify the previ­
ous command if the depth of cut is 
more than 2 mm. Step 2 complete) 

#101 = - #100; (The first step change in Z. Step 3 
complete) 

WHI LE [AB8 [#101] LE AB8[#23]] DO 1; 

(Exit from the loop if the sine curve 
gets defined completely, i.e., up to 
Z =- W. Step 4 complete) 

#102 = [#7 + #1 * 8IN[360 * AB8[#101] I AB8[#2 3 ]]]; 

X#102 Z#101; 

#101 = #101 - #100; 

END 1; 

N2 X[#7 + 2 * #1]; 

(X calculated . Step 5 complete) 

(Linear interpolation to the calcu­
la ted coordinates. Step 6 complete) 

(Z decremented by the specified step 
distance. Step 7 complete) 

(End of loop. Step 8 complete) 

(End of profile definition. The last seg­
ment, a radial movement up to the ini-
tial workpiece diameter, is generally 
given to ensure a better machined sur­
face at the end. However, in the present 
case, where possibly a neutral tool 
would be used, this step may be con­
sidered unnecessary, and one can sim­
ply write N2 END 1. Step 9 complete) 

#103 = #4119; (Current rpm stored ) 

G70 P1 Q2 F[#9 I 2] 8[#103 * 2]; 

GOO X#105 2#106; 

F#9 8#103; 

M99; 

(Finishing by G70. Make the neces­
sary change here if a different tool is 
desired to be used for finishing. Step 
10 complete) 

(Tool sent back to its original position) 

(The original feedrate and rpm 
restored ) 

(Return to the calling program . Step 
11 complete) 
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This macro, to obtain the shape of Fig. 8.6, can be called in a man­
ner such as 

G98 GOO XlOO ZO ; 

G65 P8019 D30 W65 A3 QO . l RO.S F60 ; 

The shank of a right-hand turning tool is likely to interfere with 
the geometry of this part, unless the tip angle is very small (say, 35°), 
and the amplitude to the length ratio of the sine curve is also small. 
This necessitates the use of a neutral tool. If a diamond-shaped insert 
is used in a neutral shank, the square edge at the left end of the sine 
curve cannot be obtained by this method. (There would be overcut­
ting at half the tip angle on the left side.) One cannot use a round 
insert, because it has to be used with radius compensation (since the 
point on the tool that cuts the material continuously changes its posi­
tion), and radius compensation cannot be used inside G71-G73 cycles 
(which is a limitation of these cycles). 
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CHAPTER 9 
Parametric 

Programming 

The term "parametric programming" is not very clearly defined. 
Different people use it to mean different things. For example, some 
people use it in the sense we are using the term "macro program­
ming." They would say that Fanuc Custom Macro B, Fadal Macro, 
Okuma User Task, etc. are the available programming languages for 
parametric programming. On the other hand, some people use this 
term in its mathematical sense, that is, for a program written in terms 
of parameters, which can be made to do different things just by 
changing the values of the parameters of the program. In other words, 
the technique of writing a single program for a family of parts is 
referred to as parametric programming. This definition has a wider 
acceptance and hence, adopted in this text. 

Drilling of bolt holes on flanges, having different number of holes, 
different depth and angular orientation of holes, different pitch circle 
diameter, etc. is a good example of an application of parametric pro­
gramming technique. All the flanges may have different dimensions, 
but similar characteristics. Thus, these belong to the same family of 
parts. In such cases, instead of writing different programs for differ­
ent flanges, it is much better to write a single program in terms of 
(variable) parameters, and call it with the desired values for the 
parameters. Such a program would necessarily be a macro, though 
not all macros can be called parametric programs. For example, a 
macro for a user-designed peck-drilling cycle for very deep holes, 
which has gradually reducing peck lengths in subsequent pecks, does 
not qualify to be called a parametric program. A parametric program 
must relate to a family of parts. Thus, parametric programming is a 
subset of macro programming. 

Incidentally, the term "parameter" used here is not at all related to 
machine parameters (which are also referred to as system parameters, 

193 

www.EngineeringBooksPdf.com



194 Chapter Nine 

control parameters, or simply parameters) that decide the default 
settings of a machine. (If a change in some default setting is needed, 
the corresponding machine parameters would need to be altered. This 
is usually done manually, in MDI mode. However, it is also possible to 
change these automatically, through any program, including a para­
metric program. This issue is discussed in Chap. 13.) The remaining 
part of this chapter is devoted to examples of parametric programs for 
both lathe and milling machines. 

9.2 Locator Pin 
Consider the locator pin shown in Fig. 9.1. Out of the seven dimen­
sions that define the geometry of the pin, only two dimensions are 
fixed. The remaining five dimensions are given in terms of variables 
A, B, C, D, and R. The values of these variables are given in Table 9.1, 
for five pins of different dimensions. There is no need to write five 

I c 
B 

-,--

/ -1 
2 X 45° 

~Y 

0 - ------- ---- -<( 

-~ 

FIGURE 9.1 Locator pin . 

Pin Number I A B I c D R 

1 10 10 15 25 2 

2 15 10 15 30 2 
--

3 20 15 25 35 3 

4 25 15 25 40 3 

5 30 20 35 45 4 

TABLE 9.1 Dimensions of the Locator Pin Shown in Fig. 9.1 
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different programs for the five pins. A single parametric program 
08020 would produce all five pin types (as well as pins with any 
other dimensions, as long as the overall geometry is the same), when 
called with the desired values for parameters A, B, C, D, and R that 
correspond to local variables #1, #2, #3, #7, and #18, respectively, in 
program 08020. Thus, G65 P8020 AlO B10 C15 D25 R2 would pro­
duce pin number 1, G65 P8020 A15 B10 C15 D30 R2 would produce 
pin number 2, and so on. 

The following assumptions have been made while writing the 
macro: 

1. The calling program is in millimeter mode (G21). 

2. The initial diameter of the workpiece is 50 mm, for all the 
pins. 

3. The workpiece zero point is at the center of the right face of 
the workpiece. (In fact, all the lathe programs in this text 
assume the same location for the workpiece zero point.) 

4. The workpiece requires a facing of 0.5 mm, in one pass. 
(A tailstock is not being used to support the workpiece.) Note 
that this would result in the right face of the part being at 
Z = -0.5 mm, since Z = 0 is assumed to lie on the right face of 
the workpiece. 

5. The feedrate and the spindle speed (or CSS, the constant 
surface speed in G96 mode) in the calling program are correct 
and would be used for roughing. For finishing, feedrate 
would be halved and spindle speed/ CSS would be doubled. 

6. Tool number 1 with offset number 1 would be used for rough­
ing, and tool number 3 with offset number 3 would be used 
for finishing. 

7. G71 (Type 1) and G70 would be used for roughing and finish­
ing, respectively. 

8. Part-off operation is not needed (would be done separately, 
using, say, G75), for which 3 mm extra length should be pro­
vided on the larger diameter. 

These assumptions are not really a limitation of the given macro. 
One always has to first decide what the macro is supposed to do, 
which is what has been done here. If some of these assumptions are 
not quite suitable in a certain case, the macro would need to be mod­
ified accordingly. In general, modifying in a macro is much simpler 
than writing a new macro. In fact, one should always start with a 
simple and easily achievable goal. The complexities should be incor­
porated one by one, only after the basic macro is ready and tested. 
Trying to develop a complex macro in the very first attempt is a source 
of confusion, leading to programming errors. Such a programming 
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style was recommended earlier in this text. It is being reiterated here 
because it is so important. 

This is not an example of a macro involving a complex logic. 
Therefore, a flowchart or an algorithm is not really necessary. It is, 
however, recommended to at least write down how the toolpath is to 
be generated, which would streamline the thought process: 

1. Send the turret to its home position, and select tool number 1 
with offset number 1. 

2. Place the tool at (X54 Z2), and face up to Z-0.5 using G94, in 
a single pass. 

3. Place the tool at (X50 Z2), and rough out using G71, leaving 
suitable finishing allowances. 

4. Send the turret to its home position, and select tool number 3 
with offset number 3. 

5. Place the tool at (X50 Z2), and finish by G70, at reduced feedrate 
and increased rpm/CSS, with radius compensation. (Since it 
is a right-hand turning tool, the tool-tip number on a rear-type 
lathe would be 3 that has to be entered in the third row of the 
geometry or wear offset table. The radius of the tool tip is 
entered in the geometry offset table.) 

The defined profile, which is same for both G71 and G70, is shown 
in Fig. 9.2. 

Q 

X 

Note: 
1. Refer to Fig. 9.1 for dimensions not shown. 
2. The profile definition starts at P and ends at Q. 
3. The X· and Z-coordinates of P are (A - 9) and 2, respectively. 
4. The X- and Z-coordinates of Q are 54 and -(C + 3.5) , respectively. 
5. The extended toolpath at the start of the profile is at the angle of the 

chamfer (45°). This makes a better-quality corner. 
6. The Z-coordinate of Q includes 3 rnm extra length on the larger 

diameter, which is needed for part-off operation. 

FIGURE 9.2 Defined profile for G71 and G70, for the pin of Fig. 9.1. 
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08020 (LOCATOR PIN) ; 

G28 UO; 

G28 WO; 

T0101; 

GOO Z2; 

X54; 

M03; 

MOB ; 

G94 X-4 Z-0.5; 

GOO X50 Z2; 

G71 U2 RO. 5; 

G71 P10 Q20 U0.2 W0 .1; 

N10 GOO X[#1 - 9]; 

G01 X#1 Z-2.5; 

Z-[#2 + 0.5- #18]; 

G02 X[#1 + 2 * #18] Z-[#2 
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(X-home) 

(Z-home. Separate X- and Z-homing 
eliminates the possibility of any inter­
ference between the moving turret 
and the machine body, such as the 
tailstock) 

(Tool number 1, with offset number 1, 
brought in the cutting position. Step 1 
complete) 
(Positioning move) 

(Tool placed at the start point of G94. 
Here also, two separate motions are 
given to eliminate the possibility of 
interference) 

(Clockwise rotation of the spindle 
starts, at the currently active rpm) 

(Coolant starts. Usually, only one 
M-code in a line is permitted) 

(Facing up to below the axis of the 
workpiece removes any kink at the 
center. In the absence of an F-word, the 
active feedrate, at the time of calling the 
macro, would be used for facing. Step 2 
complete) 
(Tool placed at the start point of 
G71 cycle. Z2 is redundant in this 
command) 

(2 mm depth of cut, and 0.5 mm radial 
retraction chosen. Modify these values, 
if not considered suitable) 

(The profile definition starts at N10 
block and ends at N20 block. The X­
and Z-finishing allowances are 0.2 and 
0.1 mm, respectively. Modify these 
values, if not considered suitable. In the 
absence of an F-word, the previous 
feedrate would be used for roughing) 
(Profile definition starts here. G71 
(Type 1) does not allow a Z-word in 
this block. It automatically uses the 
current Z-position, for locating the first 
point on the profile, point Pin Fig. 9.2) 
(Making chamfer) 

(Straight turning on smaller diameter) 
+ 0.5] R#lB; 

(Making concave fillet) 
GO 1 X [ #7 - 4] ; (Straight facing toward the larger 

diameter) 
G03 X#7 z- [ #2 + 2. 5] R2; (Making convex fillet) 
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GO 1 z- [ # 3 + 3 . 5) ; (Straight turning on larger diameter, 
providing 3 mm extra length for part­
off operation) 

N20 X54; (Straight facing to clear off the work­
piece. Profile definition ends here, with 
2 mm radial clearance from the work­
piece, which is point Q in Fig. 9 .2. Step 3 
complete) 

G28 UO; (X-home) 

G2 8 WO ; (Z-home) 

T0303; (Tool number 3 with offset number 3 
selected for finishing. Step 4 complete) 

G42 GOO Z2; (Radius compensation invoked. It was 
not used earlier because radius com­
pensation is ignored by the canned 
cycles, G71-G76) 

X5 0 ; (Some controls require that the first two 
moves, after invoking radius compen­
sation, be along the two axes, sepa­
rately, before reaching the start point of 
the profile, otherwise there might be 
some error in tool positioning at the 
start point. On Fanuc control, however, 
a single start-up move, such as G42 GOO 
XSO Z2, is sufficient. Here, the main rea­
son for splitting it into two moves is 
interference avoidance) 

G70 PlO Q20 F[#4109 I 2] S[#4119 * 2); 

G40 U4 W2 ; 

M05; 

M09; 

G28 UO; 

G28 WO; 

F [#4109 * 2) S[#4119 I 2] ; 

M99; 

(Finishing by half the current feedrate 
and twice the current rpm/CSS. Modify 
if desired. Step 5 complete) 
(Radius compensation canceled. As a 
rule of thumb, cancelation must be 
accompanied by adequate outward 
movement, otherwise, the tool may 
move toward the workpiece during 
cancellation. Even if compensation is 
not explicitly canceled by G40, it would 
be canceled automatically by M30 
which resets the control) 

(Spindle stops) 
(Coolant stops) 

(X-home) 

(Z-home) 
(The original feedrate and rpm/ CSS 
restored) 

(Return to the calling program) 

For making pin number 1, this macro may be called by a program 
such as the one given below: 
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G21 G97 G98; 

F60 81000; 
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(Change to G96 for CSS, and G99 for 
feedrate in millimeters per revolution) 

(Specify roughing feedrate and spindle 
speed) 

G65 P8020 A1 0 B10 C15 D25 R2; 

M30; 

The given macro can make pins with any dimension, defined in 
terms of parameters A, B, C, D, and R. However, if the requirement is 
to make pins of only the five given types, and the operator is not 
expected to remember the meanings of the associated letter addresses 
and / or the exact dimensions of the pins, one can write a modified 
main program that would produce the desired type of pin just by 
entering the appropriate pin number in the beginning of the program. 
Such a program can be called a program for a family of parts, in the 
true sense: 

# 10 0 = 1 ; (Specify pin number here. One can also 
use a local variable such as #1 here. This 
would be different from variable #1 
used inside the macro, as the local vari­
ables of the main program and those of 
the macro called by it belong to level 0 
and level1, respectively) 

I F [[ #100 LT 1 ] OR [# 100 GT 5 ]] THEN #3000 = 1 ( ILLEGAL 
PIN NUMBER) ; 

G21 G97 G98; 

F60 81000 ; 

I F [#100 EQ 

IF [ #100 EQ 

I F [# 100 EQ 

IF [#100 EQ 

I F [ #100 EQ 

N1 G65 P8020 

GOTO 6; 

1] GOTO 1 · 

2 ] GOTO 2· 

3 ] GOTO 3 ; 

4 ] GOTO 4 ; 

5] GOTO 5 ; 

A10 B10 C15 

(Any value other than 1, 2, 3, 4, and 5 
would alarm out, terminating the pro­
gram execution) 

(Branches out to N1 for producing pin 1) 

(Branches out to N2 for producing pin 2) 

(Branches out to N3 for producing pin 3) 

(Branches out to N4 for producing pin 4) 
(Branches out to N5 for producing pin 5) 

D25 R2; 

(Macro call with pin-1 parameters) 

N2 G65 P8020 A15 B10 C15 D30 R2 ; 

(Macro call with pin-2 parameters) 

GOTO 6; 

N3 G65 P8020 A20 B15 C25 D35 R3 ; 

(Macro call with pin-3 parameters) 

GOTO 6; 

N4 G65 P8020 A25 B15 C25 D40 R3 ; 

(Macro call with pin-4 parameters) 

GOTO 6; 
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N5 G65 P8020 A30 B20 C35 D45 R4; 

(Macro call with pin-5 parameters) 

N6 M30; 

9.3 Bolt Holes on a Flange 

>-

Consider the flange shown in Fig. 9.3. It can be described in terms of 
the following parameters. (The corresponding local variables, as per 
argument specification 1, are indicated in brackets.) 

X (#24) = X-coordinate of the center of the pitch circle 

Y (#25) = Y-coordinate of the center of the pitch circle 

Z (#26) =depth of holes 

D (#7) =pitch circle diameter 

H (#11) =number of holes 

S (#19) =start angle (angle of the first hole, with the X-axis) 

R (#18) = R-point level for the drilling cycle 

F (#9) = feedrate 

Pitch circle 
diameter, D 

Hol•oo3~ 

Hole no. 1 

FIGURE 9 .3 Bolt holes on a flange . 
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To keep things simple, G81 would be used for drilling holes, at 
the current spindle speed. The readers are, however, encouraged to 
introduce additional local variables for these, which is being left as an 
exercise. For a drilling cycle other than G81, information regarding 
dwell value (for G82) or peck distance (for G73/G83) would also be 
needed, necessitating the use of two more local variables for assign­
ing values for these. Note that there is no harm in specifying a dwell 
value or a peck distance for a canned cycle that does not use these 
features. It would simply ignore such arguments. Hence, the canned­
cycle block can have the same argument list, irrespective of whether 
it refers to G81, G82, G73, or G83. 

Though a macro can be written for machining a flange with any 
values for the chosen parameters, a family of flanges, as described 
in Table 9.2, would be considered here. Note that X andY are not 
really the parameters of a flange. Their values depend on how the 
flange has been clamped on the machine table, with respect to the 
active work coordinate system (G54, GSS, etc.). Hence, the same 
values for these have been taken for all the flanges, as these values 
have no significance with regard to the type of a flange . It was neces­
sary to include these variables for the sake of generality. Similarly, 
the start angle may not have any relevance. Hence, 0° has been 
taken in all cases. It has been introduced to take care of some special 
requirement. 

We would assume the following (though it is not difficult to relax 
these assumptions, it has been left as an exercise for the readers): 

1. The calling program uses absolute coordinates (G90). 

2. The proper tool is held by the spindle that rotates with proper 
rpm, before calling the macro. 

3. Tool length compensation has been incorporated in the 
calling program. 

Flange I 
I l I I Number X I 

y 
I z D I H 5 R F 

1 I 150 100 5 I 50 4 0 1 i 60 
·-· 

2 150 100 10 100 6 0 1 50 
- --

3 150 100 15 150 i 8 0 I 1.5 40 
·- -- ----·· --·-· -·-- ·-

I 
,-c;·-

4 150 100 20 200 10 
_I 

2 30 

5 150 I 100 I 20 ! 300 12 0 2 I 30 

TABLE 9.2 Dimensions of the Flange Shown in Fig. 9.3 

www.EngineeringBooksPdf.com



202 C h a p t e r N i n e 

The following algorithm can be used for developing a macro 
(08021) for this problem: 

1. Set arguments for G81, with KO (with KO, the information 
gets stored without drilling a hole). 

2. Calculate the angle between consecutive holes, by dividing 
360 by the number of holes. 

3. Set <hole counter> = 1. 

4. If the hole counter is greater than the number of holes, go to 
step 8. 

5. Specify XY-coordinates of the first / next hole. (This would 
make the tool move to the specified coordinates where a hole 
would be drilled by G81.) 

6. Increment hole counter by 1. 

7. Go to step 4. 

8. Cancel canned cycle. 

9. Return to the calling program. 

08021 (BOLT HOLES ON A FLANGE) ; 

G81 Z[ABS[#26]] R#18 F#9 KO; 

#100 [360 I #11]; 

#101 1 ; 

(Arguments of G81 specified. Step 1 
complete) 

(Angle between subsequent holes calcu­
lated. A negative value for the number 
of holes, H, is also permitted that would 
drill the holes in the clockwise direc­
tion. Step 2 complete) 

(Hole counter initialized. Its value indicates 
the hole number that is to be drilled next. 
1 and #11 correspond to the first and the last 
holes, respectively. Step 3 complete) 

WHILE [#101 LE ABS[#11]] DO 1; 

Gump out of the loop if the hole counter 
exceeds the specified number of holes, 
i.e., when all the holes have been drilled. 
Step 4 complete) 

#102 #19 + #100 *[#101 - 1]; 

(Calculates the angular position of the 
first/ next hole with respect to the X-axis, 
i.e., the CCW angle subtended at the center 
of the pitch circle by the position where the 
next drilling is to be done. A negative value 
for the start angle, #19, is also permitted) 

#103 #24 + [#7 I 2]COS[#102]; 

(X-coordinate of the first / next hole 
calculated) 
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#104 #25 + [#7 I 2] SIN[#102]; 

X#103 Y#104; 

#101 = #101 + 1; 

END 1; 

G80; 

M99; 

(Y-coordinate of the first / next hole 
calculated) 
(First/next hole drilled by G81 that is cur­
rently active. As long as it is not canceled 
by, say, GSO, every axis displacement 
would cause a hole to be drilled at the new 
position, using G81. Step 5 complete) 

(Hole counter incremented by 1, for 
drilling the next hole. Step 6 complete) 

(End of the current loop. Jumps to the 
WHILE block, to check the condition for 
executing the next loop. Step 7 complete) 

(G81 canceled. A canned cycle gets can­
celed also by Group 1 G-eodes such as 
GOO and G01. Step 8 complete) 

(Return to the calling program. Step 9 
complete) 

If some error traps are desired to be added to the macro, insert the 
following blocks in the beginning of the program: 

IF [#24 EQ #0] THEN #3000 = 1 (PCD CENTER X NOT SPECIFIED); 

IF [#25 EQ #0] THEN #3000 = 2 (PCD CENTER Y NOT SPECIFIED); 

IF [#26 EQ #0] THEN #3000 = 3 (HOLE DEPTH NOT SPECIFIED); 

IF [#7 EQ #0] THEN #3000 = 4 (PCD NOT SPECIFIED); 

IF [#11 EQ #0] THEN #3000 = 5 (NO. OF HOLES NOT SPECIFIED); 

IF [#19 EQ #0] THEN #3000 = 6 (START ANGLE NOT SPECIFIED); 

IF [#18 EQ #0] THEN #3000 = 7 (R-POINT NOT SPECIFIED); 

IF [#9 EQ #0] THEN #3000 = 8 (FEEDRATE NOT SPECIFIED); 

For making flange number 1, this macro may be called by a pro­
gram such as the one given below: 

G21 G94; 

G91 G28 ZO; 

G28 XO YO; 

M06 T01; 

G90; 

GOO XO YO; 

G43 H01 Z50; 

M03 S1000; 

M08; 

(Change to G20 for inch mode, and G95 
for feedrate in feed per revolution) 

(Tool magazine sent to the home posi­
tion, for changing tool) 

(Desired tool placed in the spindle) 
(Absolute coordinate mode selected) 

(XY positioning. Specify different coordi­
nate values, if needed, e.g., when the cen­
ter of the pitch circle is too far from the 
XY-datum) 

(Tool length compensation invoked. Tool 
placed at Z = 50 mm. It defines the 
initial Z-level for G81) 

(Specify appropriate CW spindle speed) 
(Coolant starts) 
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G65 P8021 X150 Y100 Z5 D50 H4 SO R1 F60; 

M09; (Coolant stops) 
M30; 

The next task is to modify the calling program so that the desired 
type of flange is produced just by specifying its number in the begin­
ning of the program. This would obviate the need for referring to the 
drawing/ data table for obtaining the dimensions of different flanges . 
Moreover, there would be no need for understanding the significance 
of each letter address in the G65 block. Such a program, with an addi­
tional provision to specify values for the coordinates of the center of 
the pitch circle and the start angle (since the values given in Table 9.2 
may not apply in all cases), is given below: 

#100 1· (Specify flange number) 

#101 150; (Specify X-coordinate of the center of the 
pitch circle. One way to determine the 
value is to manually move the spindle to 
the desired center of the pitch circle, and 
then read the coordinate display) 

#102 100; (Specify Y-coordinate of the center of the 
pitch circle) 

#103 0; (Specify start angle) 

IF [[#100 LT 1] OR [#100 GT 5]] THEN #3000 = 1 (ILLEGAL 
FLANGE NUMBER) ; 

G21 G94; 

G91 G28 ZO; 

G28 XO YO; 

M06 T01; 

G90; 

GOO X#101 Y#102; 

G43 H01 Z50; 

M03 51000; 

M08; 

IF [#100 EQ 1] GOTO 

IF [#100 EQ 2] GOTO 

IF [#100 EQ 3] GOTO 

IF [#100 EQ 4] GOTO 

IF [#100 EQ 5] GOTO 

N1 G65 P8021 X#101 

GOTO 6; 

1; 

2; 

3; 

4; 

5; 

(Any value other than 1, 2, 3, 4, and 5 
would alarm out, terminating the program 
execution) 

(Modify T01 if a tool number other than 1 
is to be used) 

(XY-positioning at the center of the pitch 
circle) 

(Branches out to N1 for producing flange 1) 

(Branches out to N2 for producing flange 2) 

(Branches out to N3 for producing flange 3) 

(Branches out to N4 for producing flange 4) 

(Branches out to N5 for producing flange 5) 

Y#102 Z5 D50 H4 5#103 R1 F60; 

(Macro call with flange-1 parameters) 
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N2 G65 P8021 X#101 Y#102 Z10 0100 H6 S#103 R1 F50; 

(Macro call with flange-2 parameters) 

GOTO 6; 

N3 G65 P8021 X#101 Y#102 Z15 0150 H8 S#103 R1.5 F40; 

(Macro call with flange-3 parameters) 

GOTO 6; 

N4 G65 P8021 X#101 Y#102 Z20 0200 H10 S#103 R2 F30; 

(Macro call with flange-4 parameters) 

GOTO 6; 

N5 G65 P8021 X#101 Y#102 Z20 0300 H12 S#103 R2 F30; 

(Macro call with flange-S parameters) 

N6 M09; 

M30; 

The readers should observe the programming styles adopted in 
08020 and 08021. 08020 includes most of the required set-up-related 
commands (such as tool change), requiring very few of these in the 
calling program. On the other hand, 08021 has none of these com­
mands, which requires that these be inserted in the calling program. 
The first style is considered better, provided the macro is made flexi­
ble enough by using local variables for controlling its action. For 
example, a limitation of 08020 is that it will always use T0101 for 
roughing and T0303 for finishing . If some other tool/ offset number is 
desired to be used, the macro would need to be modified, which is 
not considered good practice. Usually, macros are written by expert 
programmers and are edit-protected through parameters. Hence, 
local variables for roughing and finishing tool numbers should have 
been added in the argument list. On the other hand, even though 
several set-up commands are needed for calling 08021, this macro 
can be used in different cutting conditions, without any modification 
in it. Every approach has its own advantages and limitations. It is, 
basically, a matter of individual choice and specific requirements. 
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10.1 Introduction 

CHAPTER 10 
Custom Canned 

Cycles 

It has already been discussed in Sec. 7.3 (subsection Call with User­
Defined G-Code) how a new G-eode can be defined or an existing one 
be redefined. The basic aim of defining a new G-eode, instead of 
using a G65/G66 macro call, is that one need not know anything 
about macro programming to be able to call a macro. The defined G­
eode would call a macro without using G65 / G66. It can be used the 
way a predefined canned cycle such as G71 on a lathe is used, with 
the difference that the used-defined G-eode would always be a single­
block code. In fact, all built-in canned cycles internally call some pre­
defined macros only, without we realizing this. One only needs to 
know the significance of different letter addresses in such codes. The 
new G-eode also can be used in the same manner. Thus, in a way, it 
enhances the standard control features, by making available some 
extra G-eodes for some complex machining applications. As many as 
10 new G-eodes can be defined (including redefined G-eodes). 

There might be situations where no standard G-eode would be 
quite suitable. A deep-hole drilling, requiring peck drilling with pro­
gressively reducing peck lengths, is one such example on a milling 
machine. Similarly, on a lathe, G74 is available for peck drilling, but 
the tool does not retract to outside the hole, after a peck. This might 
make deep-hole drilling difficult. Moreover, some of the G-eodes, 
such as helical interpolation, are available as options, which need to 
be additionally purchased. In all such cases, it may be possible to 
define / redefinea G-eode to suit particular application. Two examples, 
one for a lathe and one for a milling machine, are discussed next. 

10.2 Deep-Hole Peck Drilling on a Lathe 
The pecking action of the standard G74 cycle on a lathe is shown in 
Fig. 10.1. G74 is designed for drilling deep holes, but it does not work 

207 
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Q O+R .. ·~---.. - --• Start point 

-] 
Note: 
1. The syntax of G74 for drilling a hole is 

G74 R_; 
G74Z_ Q_ F_; 
where (in millimeter mode) 
R is retraction after each peck (in millimeters), 
Z is hole depth (in millimeters), 
Q is peck length (in microns) and 
F is feedrate (in millimeters per minute or millimeters per revolution). 

2. All the pecks and the retractions are along the axis of the hole. 
In the figure, these are shown separately for clarity. 

3. The peck continues until the bottom of the hole is reached. Thereafter, 
the tool retracts to the start point of the cycle. In general , the last 
peck would have a movement ~ O+R, to suit the specified depth. 

F tG URE 10.1 Peck-drilling cycle (G7 4) on a lathe. 

satisfactorily when the hole is too deep, because though it does break 
the chips, it does not clear them. While this would not cause any prob­
lem with a through-coolant drill, it is likely to result in a reduced tool 
life because of chip clogging and coolant starvation, if solid drills are 
used. G74 is, in fact, the lathe equivalent of G73 on a milling machine, 
with similar limitations. While G83 is available on a milling machine, 
which clears the chips by retracting to outside the hole (up toR-point) 
after each peck, it is usually available on a lathe only if it has live tool­
ing. Therefore, it is desirable to have a user-defined G-eode on a lathe, 
which retracts the tool to outside the hole after each peck. The desired 
toolpath is shown in Fig. 10.2, where the G174 code number has been 
especially chosen to indicate that it is a modified version of G74. In 
fact, it is for this very reason that the peck length in G174 has been 
kept in microns, not in millimeters. This ensures that the Z-, Q- and 
F-words of both the cycles have the same meanings. Thus, both G74 
and G174 can be used in the same manner, except that G174 would 
have a "missing" first block. Any programmer would be able to make 
use of G174, as if it were a built-in canned cycle of the control, without 
bothering about how it was made available on the machine. And so 
what if the programmer had never heard about macro programming! 

Our next task is to define such a G-eode. Referring to Table 7.1, 174 
would need to be stored in parameter number 6051 (say), while the 
corresponding macro 09011 should generate the desired toolpath, as 
shown in Fig. 10.2, for which the following algorithm can be used: 

1. Store the initial Z-position. 

2. Calculate <required depth>. (Drilling to be started from the 
initial Z-position.) 
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Q Q Q 

Feed 1 Start point 

Rapid 

Feed 1 mm Rapid I 
Rapid 

Feed 1 mm Rapid I 
Rapid 

F eed 1 mm Rapid I 
Note: 
1. The syntax of G 17 4, a user-defined cycle, for drilling a deep hole can be 

G174 Z_ Q_ F _; 
where (in millimeter mode) 
Z is hole depth (in millimeters) , 
Q is peck length (in microns) and 
F is feedrate (in millimeters per minute or millimeters per revolution) . 

2. All the pecks and the retractions are along the axis of the hole. In the figure, 
these are shown separately for clarity. 

3. The designed toolpath is same as that in the standard G74 cycle, except that the retraction 
at the end of each peck is up to the start point, for driving the chips to outside the hole. 

4. All the outward motions (retractions) are rapid motions. 
5. Each inward motion is rapid up to 1 mm before the previous drilled depth, after which feed 

motion starts, to increase the depth by the specified peck length. 
6. The peck continues until the bottom of the hole is reached. Thereafter, the tool retracts to 

the start point of the cycle. The last peck would have an adjusted movement, to suit the 
specified depth. 

FIGURE 10.2 Deep-hole peck drilling on a lathe. 

3. If <required depth> is less than or equal to Q, go to step 15. 

4. Drill at the specified feedrate up to Q depth from the initial 
position. 

5. Store the current Z-position. 

6. Set <required depth> = <required depth> - Q 

7. Retract at rapid rate to the initial position. 

8. If <required depth> is less than or equal to Q, go to step 17. 

9. Rapid motion up to 1 mm before the Z-position at the end of 
the previous peck. 

10. Feed motion to increase the existing depth of the hole by Q. 

11: Store the current Z-position. 

12. Retract at rapid rate to the initial position. 

13. Set <required depth> = <required depth> - Q 

14. Go to step 8. 
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15. Single and continuous feed motion up to the final depth. 

16. Go to step 18. 

17. Drill the required depth, with rapid motion up to 1 mm before 
the previous drilled depth, followed by feed motion to reach 
the bottom of the hole. 

18. Retract at rapid rate to the initial position. 

19. Return to the calling program. 

Macro 09011, which is based on the given algorithm, also includes 
some error traps in the beginning of the program, to detect certain 
incorrect ways of calling it. This macro would drill the hole using the 
spindle speed used in the calling program, by the existing tool in the 
spindle, as is done by G74. The macro is, however, designed to be called 
with a desired feedrate. If a feedrate is not commanded while calling 
the macro, the feedrate active in the calling program, at the time of 
calling the macro, would be used for drilling. The depth of hole can 
be commanded in both absolute form (Z-word) and incremental form 
(W-word), though simultaneous specification of the two is not per­
mitted (which would alarm out) . Finally, the macro does not require 
that the Z-datum necessarily be at the right face of the workpiece. The 
axial position of the desired hole is not at all restricted by Z-datum. 
The entire hole may lie to the right or to the left of the Z-datum, or it 
may even have Z-datum somewhere inside it. 

The letter addresses in the macro-calling block (the corresponding 
local variables, as per argument specification 1, are given in brackets), 
and the common variables used in this macro are 

Z (#26) =absolute Z-coordinate of the bottom of the hole 

W (#23) = incremental Z-coordinate of the bottom of the hole 
(measured from the initial tool position) 

Q (#17) =peck length (in microns, in millimeter mode) 

F (#9) = feedrate 
#100 =stores Z-coordinate of the initial tool position 

#101 =stores <required depth> (the remaining depth to be drilled), 
which is updated after every peck 
#102 =stores Z-coordinate at the end of a peck, hence this also is 
updated after every peck 

09011 (DEEP HOLE DRILLING ON LATHE) ; 

IF [#17 EQ #0] THEN #3000 1 (PECK LENGTH NOT 
SPECIFIED) ; 

IF [[#23 EQ #0] AND [#26 EQ #0]] THEN #3000 = 2 (DEPTH NOT 
SPECIFIED); 

IF [[#23 NE #0] AND [#26 NE #0]] THEN #3000 = 3 (BOTH Z 
AND W SPECIFIED) ; 
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IF [ [#26 NE #0] AND [#5042 LE #26]] THEN #3000 4 
(INCORRECT INITIAL POSITION); 

IF [#23 GT 0] THEN #3000 = 5 (W MUST BE NEGATIVE); 

IF [[#26 EQ #0] AND [#23 EQ 0]] THEN #3000 = 6 (ZERO DEPTH 
SPECIFIED) ; 

IF [#9 EQ #0] THEN #9 = #4109; 

IF [#9 EQ 0] THEN #3000 = 7 (FEEDRATE NOT SPECIFIED); 

#100 #5042; 

#101 #5042 - #26; 

IF [#23 NE #0] THEN #101 

#17 ABS[#17] I 1000; 

IF [#101 LE #17] GOTO 10; 

G01 W-#17 F#9; 

#102 #5042; 

#101 #101 - #17; 

GOO Z#100; 

WHILE [#101 GT #17] DO 1; 

GOO Z[#102 + 1]; 

G01 Z[#102 - #17]; 

#102 = #5042; 

GOO Z#100; 

#101 = #101 - #17; 

(Alarms out if incorrect inputs are 
specified ) 

(Initial Z-position stored . Step 1 
complete) 
(Calculates required depth when Z 
is specified ) 

ABS[#23]; 
(Calculates required depth when W 
is specified. Step 2 complete) 
(Peck length in microns converted 
to millimeters. Both positive and 
negative values for peck length 
allowed. Pecking would always be 
done in the negative Z-direction) 

(If the required depth is Jess than or 
equal to the specified peck length, 
jump to block Nl O to drill the hole 
without pecking. Step 3 complete) 
(Drilling done up to the specified 
peck length, measured from the ini­
tial Z-position. Step 4 complete) 
(Current Z-position stored . Step 5 
complete) 
(Required depth updated . Step 6 
complete) 
(Rapid retraction to the initial Z­
position . Step 7 complete) 
(Drilling in a loop. If the required 
depth becomes smaller than or equal 
to the specified peck length, exit 
from the loop . Step 8 complete) 
(Rapid motion up to 1 mm to the 
right of the Z-position at the end of 
the previous peck. Step 9 complete) 
(Feed motion to increase the depth 
by the specified peck length. Step 10 
complete) 
(Current Z-position stored . Step 11 
complete) 
(Rapid retraction to the initial Z­
position . Step 12 complete) 
(Required depth updated. Step 13 
complete) 
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END 1; 

GOTO 20; 

N10 G01 W-#101 F#9 ; 

GOTO 30 ; 

N20 GOO Z[#102 + 1]; 

G01 Z[ #102 - #101 ]; 

N30 GOO Z#100 ; 

M99 ; 

Gump to the WHILE block to check 
the loop condition again. Step 14 
complete) 
Gump to N20 to drill the remaining 
depth) 

(Single feed motion to reach the 
final depth. Step 15 complete) 
(Jump to N30 for rapid retraction, 
and return to the calling program. 
Step 16 complete) 
(Rapid motion up to 1 mm before 
the previous drilled depth) 
(Remaining depth drilled. Step 17 
complete) 

(Rapid retraction to the initial Z­
position. Step 18 complete) 
(Return to the calling program. Step 
19 complete) 

This macro has been designed to be used in millimeter mode. 
However, it is very easy to modify it to make it suitable for both mil­
limeter mode (G21) and inch mode (G20). In inch mode, the 1 mm 
clearance amount (refer to Fig. 10.2) would need to be replaced by 
0.04 in. For this, replace the clearance amount (1) by a new variable, 
say, #103, everywhere in the macro (there are two such occurrences). 
Read system variable #4006 to find out whether G20 or G21 is active. 
If #4006 contains 20, set #103 to 0.04, and if #4006 contains 21, set #103 
to 1, in the beginning of the macro. In inch mode, the divisor 1000 also 
would need to be replaced by 10,000, in the block that redefines #17. 
The required modification in the program has been left as an exercise 
for the readers. 

Structurewise, macro 09011 is no different from other macros. It 
can be called, in the usual manner of calling a macro, by 

G65 P9011 Z I W_ Q_ F_; or 

G65 P9011 Z I W_ Q_ ; 

However, it also defines G174 if 174 is stored in parameter 6051, as 
already mentioned. In such a case, G174 ... would be equivalent to 
G65 P9011 ... 

To illustrate the use of the new G-eode (G174), consider the part 
shown in Fig. 10.3. For machining it with G174, just prepare a pro­
gram for G74, and replace G74 by G174 (how simple it is!). The cor­
responding block is shown boldfaced, for easy identification: 

G21 G97 G98; 

G28 UO ; 

G28 WO; 

T0101; 
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X 

-r---- --

- - ( I - - -z 
'{___ ____ 

--

30 ~ 
Note: 
The usual choice for the Z-datum is at the right face of the workpiece. It 
is shown at an arbitrary place only to illustrate the use of macro 09011 . 

FIGURE 10.3 A cylindrica l part with a hole along its axis . 

GOO Z1 2 ; 

XO ; 

M03 SlOOO; 

MOB ; 

Gl74 Z- 20 QSOOO F20; 

(or, G17 4 W-32 QSOOO F2 0) ; 

M09; 

MOS ; 

G2 8 UO ; 

G2 8 WO; 

M30 ; 

Note that the conical shape at the bottom of the hole is caused by 
the tip angle of the drill bit. Using trigonometric relations, it can be 
shown that, for a given tool diameter D and tip angle 8, the height h 
of the cone is given by 

h = ~ x tan (9o - ~J 
For the usual tip angle of 119°, this equation gets approximately sim­
plified to 

h=0.3D 

So, to obtain a cylindrical hole of a certain length, with, say, a 10-mm­
diameter drill bit, 3 mm should be added to the desired cylindrical 
length. Hence, in Fig. 10.3, the length of the cylindrical portion would 
be about 27 mm, if the tool diameter is 10 mm. 
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This completes the discussion on how to define a new G-eode on 
a lathe. It is also possible to redefine an existing G-eode, to add cer­
tain desirable feature(s) to it. For example, commanding G01 with 
very low spindle speed is likely to be a programming mistake. (How 
can you machine unless the spindle is rotating at a reasonable speed?) 
Therefore, it may be desirable that commanding G01 with a very low 
spindle speed pauses the program execution, and waits for a confir­
mation from the operator (by pressing CYCLE START again), to con­
tinue the execution. Similarly, commanding both X and U (or Z and 
W) in the same block is meaningless, and should alarm out. The 
required modification in G01 can be done in the following manner: 

IF [[ #24 NE # 0) AND [#21 NE #0)) THEN 3000 
AND U SPECIFIED) ; 

1 (BOTH X 

IF [[ #26 NE # 0) AND [ #23 NE #0 ) ) THEN 3000 
AND W SPECIFIED) ; 

2 (BOTH Z 

IF [ # 9 EQ #0) THEN #9 = #4109; 

IF [#1 9 EQ #0) THEN #19 = #4119 ; 

I F [ [#19 LT 100) AND [#4002 EQ 97 ) ) THEN #3006 
LOW RPM OK); 

IF [ [#19 LT 10 ) AND [#4002 EQ 96)) THEN #30 06 
LOW CSS OK) ; 

G01 X#24 U#21 Z#26 W#23 F#9 S#19; 

1 (I S 

1 (IS 

It is left as an exercise for the readers to interpret the given pro­
gram blocks and complete this exercise by editing a parameter among 
6050-6059 (storing 1 in it) and defining the corresponding program 
number among 09010-09019. 

Recall that a G-eode, inside a macro called by the same or a differ­
ent G-eode (other than G65 / G66), is treated as the predefined stand­
ard G-eode, with the usual function. Hence, GOl inside the macro 
called by G01 would be considered linear interpolation only; it would 
not call the same macro again, forming an endless loop. 

Note that the chosen minimum values for rpm and CSS (100 and 
10m/ min, respectively) are arbitrary. Specify suitable values for spe­
cific applications. Moreover, just checking the S-value does not con­
firm that M03 or M04 has been commanded to start the spindle! In 
fact, there is no way to determine whether or not the spindle is rotat­
ing through a program. The system variable for the M-code (#4113) 
stores the last commanded M-code number. For example, if M08 is 
commanded after M03, #4113 would contain 8. Therefore, to be on the 
safer side, one may tend to command M03 or M04 in the macro, but 
this also is not foolproof because only one of the two would be suit­
able in a particular machine set-up (whether front- or rear-type lathe, 
and normal or inverted tool clamping), which the macro programmer 
can only guess. Hence, the discussion on verification of spindle speed 
in the macro, practically remains only theoretical, though it is a good 
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programming exercise. One should know the capabilities as well as 
limitations of macro programming. Additionally, try to make the 
macro suitable for inch mode as well. 

10.3 Drilling with Reducing Peck Lengths on a 
Milling Machine 

G73 and G83 are the two peck-drilling cycles available on milling 
machines. G73 is a high-speed peck-drilling cycle, using a very small 
retraction after each peck. It is used when the hole is not too deep. 
G83 retracts the tool to R-point after every peck. This clears the chips 
completely, making the cycle suitable for deep holes. If, however, the 
hole is too deep, coolant starvation becomes an issue after a few 
pecks. The only solution is to use pecks of gradually reducing lengths, 
by a desired factor. Such a peck-drilling cycle is also referred to as a 
regressive peck-drilling cycle. Unfortunately, Fanuc control does not 
provide a built-in regressive peck-drilling cycle. Therefore, in case it 
is really needed, one would need to write a macro for it. Better still, a 
new G-eode (say, G183 that indicates a modified G83) may be defined 
for it. For this, 183 would need to be stored in, say, parameter 6052, 
while the corresponding program 09012 should generate the desired 
toolpath, as shown in Fig. 10.4. 

The algorithm for macro 09012 would generally be similar to the 
one used for macro 09011, with the main difference that the peck 
length would need to be calculated before each peck: 

1. Store the initial Z-position. 

2. Rapid motion to the XY-position (the hole center). 

3. Rapid motion to R-point. 

4. Calculate <required depth> (drilling to be started from the 
R-point). 

5. If <required depth> is less than or equal to Q, go to step 20. 

6. Drill at the specified feedrate up to Q depth from the 
R-point. 

7. Store the current Z-position. 

8. Set <required depth> = <required depth> - Q. 

9. Retract at rapid rate to the R-point. 

10. If <required depth> is less than or equal toM or the new peck 
length (which is equal to the previous peck length multiplied 
by regression factor I), go to step 18. 

11. Calculate the new peck length. If it comes out to be smaller 
than M, set it equal toM. 
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1. The syntax of G 183, a regressive peck-drilling cycle on a milling machine, can be 
G 183 X_ Y _ Z_ R_ Q_ I_ M_ F _ ; 
where 
X, Y is hole location, 
Z is the hole depth, 
R is the A-point level, 
Q is the first peck length , 
I is the regression factor, 
M is the minimum peck length and 
F is the feed rate. 

2. The tool first moves to the XY-point (hole axis) , and then to the A-point, at rapid traverser 
after which drilling starts. The designed toolpath is the same as that in the standard G83 
cycle, except that the subsequent peck lengths get reduced by the regression factor 
(Q -7 Q x I -7 Q x I x I, and so on). 

3. All the pecks and the retractions are along the axis of the hole. In the figure , these are 
shown separately for clarity. 

4. If a calculated peck length comes out to be smaller than the specified minimum peck 
length, this as well as all the subsequent peck lengths are clamped to the specified 
minimum value. 

5. All the outward motions (retractions) are rapid motions. 
6. Each drilling motion is rapid up to 1 mm before the previous driiled depth , after which 

feed motion starts, to increase the depth by the calcu lated peck length. 
7. The peck continues until the bottom of the hole is reached. Thereafter, the tool retracts to 

A-point or the initial Z-level. The last peck would have an adjusted movement, to suit the 
specified depth. 

FIGURE 10.4 Regressive peck-drilling cycle on a milling machine. 
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12. Rapid motion up to 1 mm above the Z-position at the end of 
the previous peck. 

13. Feed motion to increase the existing depth of hole by the new 
peck length. 

14. Store the current Z-position. 

15. Retract at rapid rate to R-point. 

16. Set <required depth> = <required depth> - <current peck 
length>. 

17. Go to step 10. 

18. Drill the required depth, with rapid motion up to 1 mm above 
the previous drilled depth, followed by feed motion to reach 
the bottom of the hole. 

19. Go to step 21. 

20. Single and continuous feed motion up to the final depth. 

21. Retract at rapid rate to the R-point if G99 is active, or the 
initial Z-position if G98 is active. 

22. Return to the calling program. 

The local and common variables used in this macro are given 
below (all coordinates are in the absolute coordinate mode, G90): 

X (#24) = X-coordinate of the hole center 

Y (#25) = Y-coordinate of the hole center 
Z (#26) = Z-coordinate of the bottom of the hole 
R (#18) = Z-coordinate of R-point 
Q (#17) =first peck length 

I (#4) =regression factor (such that any subsequent peck length 
is equal to the previous peck length multiplied by the regression 
factor. Hence, I= 1 corresponds to constant peck lengths) 
M (#13) =minimum peck length 
F (#9) = feedrate 

#100 =stores Z-coordinate of the initial tool position 
#101 =stores <required depth> (the remaining depth to be drilled), 
which is updated after every peck 

#102 = stores Z-coordinate at the end of a peck, hence this also is 
updated after every peck 

#103 =current peck length (calculated as its previous value mul­
tiplied by #4) 

09012 (REGRESSIVE PECKING ON MILL M/ C) ; 

IF [#24 EQ #0] THEN #3000 1 (SPECIFY HOLE 
X-COORDINATE) ; 
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IF [#25 EQ #0] THEN #3000 2 (SPECIFY HOLE 
Y-COORDINATE); 

IF [#26 EQ #0] THEN #3000 = 3 (SPECIFY HOLE DEPTH); 

IF [#18 EQ #0] THEN #3000 = 4 (SPECIFY R-POINT); 

IF [#17 EQ #0] THEN #3000 5 (SPECIFY FIRST PECK 
LENGTH); 

IF [#13 EQ #0] THEN #3000 6 (SPECIFY MINMUM PECK 
LENGTH); 

IF [#4 EQ #0] THEN #3000 7 (SPECIFY REGRESSION 
FACTOR); 

IF [#9 EQ #0] THEN #9 #4109; 

IF [#9 EQ 0] THEN #3000 = 8 (SPECIFY FEEDRATE); 
(Alarms out if inputs are missing) 

#100 = #5043; (Initial Z-position stored. Step 1 
complete) 

GOO X#24 Y#25; 

Z#18; 

#101 = #18 - #26; 

IF [#101 LE 0] 
SPECIFIED); 

#17 = ABS[#17]; 

#13 ABS[#13]; 

THEN 

(Rapid traverse to the hole center. 
Step 2 complete) 
(Rapid traverse to the R-point. Step 3 
complete) 
(Calculates required depth. Step 4 
complete) 

#3000 9 (IMPROPER R OR Z 

(Both positive and negative values 
for the first peck length allowed. 
Pecking would always be done in 
the negative Z-direction) 
(Both positive and negative values 
for the minimum peck length 
allowed) 

IF [#101 LE #17] GOTO 10; (If the required depth is less than 
or equal to the first peck length, 

G01 Z[#18- #17] F#9; 

#102 #5043; 

#101 #101 - #17; 

jump to block N lO to drill the hole 
without pecking. Step 5 complete) 
(Drilling done up to the first peck 
length, measured from the R-point. 
Step 6 complete) 
(Current Z-position stored. Step 7 
complete) 
(Required depth updated. Step 8 
complete) 

GOO Z#18; (Rapid retraction toR-point. Step 9 
complete) 

#103 = #17; (Current peck length initialized) 

WHILE [[#101 GT #13] AND [#101 GT [#103 * #4]]] DO 1; 
(Drilling in a loop. If the required 
depth becomes smaller than or 
equal to the minimum peck length 
or the new peck length, exit from 
the loop. Step 10 complete) 
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#103 = #103 * #4; 

IF [#103 LT #13] THEN #103 #13; 

GOO Z [#102 + 1]; 

G01 Z[#102 - #103]; 

#10 2 = #5043; 

GOO Z#18; 

#101 = #101 - #103; 

END 1 ; 

GOO Z[#102 + 1]; 

G01 Z#26; 

GOTO 20; 

N10 G01 Z#26 F#9; 

N20 GOO Z#18; 

IF [#4010 EQ 99] GOTO 30; 

GOO Z#100; 

N30 M99; 

(New peck length calculated. 
Step 11 complete) 

(Rapid motion up to 1 mm above 
the Z-position at the end of the pre­
vious peck. Step 12 complete) 
(Feed motion to increase the depth 
by the calculated peck length. 
Step 13 complete) 

(Current Z-position stored. Step 14 
complete) 

(Rapid retraction to R-point. 
Step 15 complete) 
(Required depth updated. Step 16 
complete) 
Oump to the WHILE block to check 
the loop condition again. Step 17 
complete) 

(Remaining depth drilled . St~p 18 
complete) 

Oump to N20 for final retraction. 
Step 19 complete) 

(Single feed motion to reach the 
final depth. Step 20 complete) 
(Retracts toR-point) 

Oumps to program end if G99 is 
active) 
(Retracts to the initial Z-level, if 
G98 is active. Step 21 complete) 

(Return to the calling program. 
Step 22 complete) 

The given macro uses millimeter mode, and can be called only in the 
absolute coordinate mode. Though it is easy to make it suitable for inch 
mode as well, it would require a little more effort to use it in incremental 
coordinate mode (G91). This is being left as an exercise for the readers. 

To illustrate the use of this macro, consider the part shown in 
Fig. 10.5, where it is assumed that the holes are so deep (i.e., with a 
large length to diameter ratio) that these require the use of regressive 
peck drilling cycle (G183). The G183 blocks are shown highlighted 
for easy identification: 

G21 G94 G54; 

G91 G28 ZO; 

G28 XO YO; 

M06 T01; 

G90 GOO XO YO; 
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FIGURE 10.5 A block with deep holes. 

G43 HOl ZlOO; 

M03 51000; 

MOB; 

G99; 

G183 XlO YlO Z-53 R2 QlO I0.9 M5 

G183 X20 YlO Z-53 R2 QlO I0.9 M5 

G183 X30 YlO Z- 53 R2 QlO I0.9 M5 

G98 ; 

G183 X40 YlO Z-53 R2 QlO I0.9 M5 

M09; 

M05; 

G91 G28 ZO; 

M30; 

F20; 

F20; 

F20; 

F20; 

0 
l{) 

Note that the first three holes have been made in G99 mode, and the 
last one in G98 mode. Hence, the tool would stay at the R-point (2 mm 
above the top surface of the block) after making each of the first three 
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holes, whereas it would retract to the initial Z-level (100 mm above 
the block) after completing the last hole. Moreover, the last three calls 
may not have F-words, since the macro is designed to automatically 
use the previous feedrate, if a feedrate is not specified while calling 
the macro. 

The macro call (with G65 or by other methods) should appear in 
a separate block, as in the given example where G98 and G99 are not 
clubbed with G183. If a G-eode is commanded to the left of the macro 
call, in the same block, it is ignored by the control. On the other hand, 
a G-eode to the right of macro call alarms out, because it is considered 
an argument of the macro, whereas a G-word is not allowed as an 
argument. M98 has a different behavior in this situation. It does not 
ignore the G-eode or alarms out, but does not wait for the completion 
of G-eode execution. Hence, if it is a movement code (such as COl), 
the subprogram execution would start while the tool is still moving. 
Therefore, to avoid any confusion, subprograms and macros should 
always be called in separate b locks. 

Some of the canned cycles, as well as codes for special functions 
such as helical interpolation, are available as options, for which addi­
tional payment is required to be made to the control manufacturer. It 
is also possible to activate any option at a later date, provided the 
hardware of the machine tool is equipped to handle it (in case of 
doubt, consult the MTB). However, as the given examples demon­
strate, it is possible for the users themselves to define the required 
G-eodes, with desired features. And these can be made even better 
than the standard codes, in certain cases! If you know macro pro­
gramming well enough, and are ready to flex your brain, you can do 
virtually anything. 
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CHAPTER 11 
Probing 

11.1 Introduction 
The productivity of a CNC machine can be increased if the set-up 
time and inspection time are reduced, by automating these time­
consuming processes. The technique broadly involves automatic 
measurement of certain dimensions, and taking machining-related 
decisions, based on the result of measurement. This process is referred 
to as probing. 

The device that is commonly used for probing is a touch probe that 
remains electronically connected (through a cable or an infrared/ radio 
signal) to the control. A touch probe senses very small displacement, 
and sends out an electrical signal (called skip signal) when "touched." 
The control immediately stores the probe / tool position the moment it 
receives the signal, in system variables, #5061-#5064 (refer to Table 3.11), 
and stops further movement of the tool. The stored positions at planned 
locations are used for calculating the desired dimensions. 

There are two basic types of touch probes: tool probe and work probe. 
A tool probe is used for automating the tool offset setting procedure, 
which is a manual process involving error-prone human judgment. It 
is a fixed-type probe, and remains attached to a stationary part on the 
machine body. The tool, which is to be probed, is made to touch it 
(probe). Since the position of the probe is known, information regard­
ing the geometry of the tool can be extracted. Moreover, a periodic 
repetition of this process gives information about the extent of tool 
wear, so that the wear offset could be suitably edited to nullify the 
error introduced due to tool wear. A sudden and large change in tool 
dimensions indicates tool breakage. 

Work probe, on the other hand, is a moving-type probe. It is held 
by the machine the way a tool is held. It is moved like a tool, so as to 
touch the workpiece/finished part at desired locations. The stored 
positions at skip signals are used to calculate the desired dimensions 
of the workpiece / finished part. The examples in this chapter pertain 
to this type of probe only. Such a probe has a long stylus, with a small 
ruby ball at its end (ruby is used since it is hard and hence prevents 
any change in the dimension of the ball due to wearing) . When the 
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ball presses against a fixed surface, the stylus deflects a little bit, and 
disturbs an optical focusing arrangement inside the probe. A differ­
ential photocell senses the change in the position of the image point, 
and triggers a signal. The diameter of the ball has to be taken into 
account in calculations, if required. (In some cases it does not come 
into the picture, e.g., it may cancel out while taking a difference in 
two positions.) 

The stylus of the probe is supported by a spring system, so that it 
does not break when suddenly deflected by a hard surface. Typically, 
a deflection of up to 5 mm at the probe tip (ball) is permitted. Note 
that the stored positions are not likely to be very accurate because of 
tip overshoot. One way to handle the overshoot is to use a fixed and 
controlled speed (feedrate), and use a calibration chart to estimate the 
overshoot. Another way involves probing at a very slow speed. Since 
it would take too much time, the surface is probed twice. First it is 
touched with a high speed, then, when the skip signal is triggered, it 
is backed off by a small amount (say, 2 to 3 mm), and moved again 
toward the surface with a very slow speed. This technique gives good 
results in a very short time, and hence is preferred most of the time. 
The examples in this chapter use the same method. 

11.2 Skip Function on a CNC Machine 
Apart from the required hardware (a touch probe and a physical con­
nection for receiving the skip signal by the control), the control also 
should be equipped with the skip-function feature, at software level. 
The associated G-eode is G31. Hence, unless G31 (or a similar code on 
controls other than Fanuc) is available, probing would not be possible. 
G31 might be an optional feature on some control versions. 

G31 is very much similar to G01, except that when the control 
receives a skip signal, the execution of G31 immediately terminates, 
the tool/probe position at that instant gets automatically stored in cer­
tain system variables, and the execution of the next block starts. When 
we talk about moving the tool / probe toward the surface to be probed, 
it actually refers to movement with G31 command. Figure 11.1 explains 
the function of G31, with and without a skip signal, on a milling 
machine. Without a skip signal, the movement occurs up to the pro­
grammed end point, whereas the movement gets terminated and the 
execution of the next block starts, the moment control receives a skip 
signal. 

11.3 Probing a Pocket 
Measuring the dimensions of a pocket is a very simple example of 
probing, but it does explain the underlying principles very clearly. 
The probe simply has to touch the top surface of the part and the bot­
tom of the pocket, one by one, for depth measurement. The difference 
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G31 is designed to work with an obstacle in the toolpath, so as to generate 
a skip signal for the purpose of measurement. It has no other use. So, an absence 
of skip signal before reaching the specified end point in G31 quite possibly 
indicates an error condition, either in programming or due to unexpected deviation in 
part dimensions. Hence, some controls issue an alarm, and terminate further execution 
of the program, in such cases. 

F IGURE 11.1 Motion associated with the skip function (G31). 

in the Z-positions at respective skip signals would be the depth of the 
pocket. This is shown in Fig. 11.2 (positions B and D, respectively) . 
Note that the diameter of the ball does not come into the picture 
because the same point of the ball touches the two surfaces. Simi­
larly, other dimensions (say, the length/ width of the pocket and the 
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FIGURE 11.2 Probing a pocket on a milling machine. 

length/ width of the part) can be measured. The length of the pocket 
can be measured by touching the pocket at, say, positions C and E, 
and then taking the difference in the stored X-positions. As is clear 
from the geometry, the diameter of the ball would need to be added 
to the obtained length. On the other hand, when the length of the part 
is measured by touching it at positions A and F, the diameter of the 
ball would need to be subtracted from the obtained value. 

The dimensions of the pocket are not important for explaining the 
probing principle. However, for the purpose of writing a program, it 
is assumed that the "expected" size of the block and the pocket are 
90 mm x 36 mm x 20 mm and 50 mm x 16 mm x 10 mm, respectively, 
with their centers at (45, 18). It is also assumed that the probe occu­
pies the position of tool post number 1, with 01 offset number for 
length compensation. The diameter of the ball is assumed to be 5 mm. 
The program for this problem is intentionally not made for a general 
case since its only aim is to explain the probing principle, without 
involving additional complications: 
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00020; 

G21 G94; 

G91 G28 ZO; 
G28 XO YO; 

M06 TOl; 

G90 GOO XlO Yl8; 
G43 HOl Z50; 

G91 G31 Z- 100 F200; 

Z2; 

G31 Z-5 FlO; 

#100 = #5063; 

Z5; 

X35; 

G31 Z-100 F200; 

Z2; 

G31 Z-5 FlO; 

#101 #5063; 

#500 #100 - #101 ; 

Z3; 

G31 X-100 F200; 
X2; 

G31 X-5 FlO; 

#102 = #5061; 

G31 XlOO F200; 

X-2; 

G31 X5 FlO; 

#103 #5061; 

#501 = #103 - #102 + 5; 

X-5; 

Probing 2'l/ 

(The probe approaches position B. It is 
expected that the probe would defi­
nitely touch the surface within the 
specified distance. The distance 100 
has no special significance, except that 
it must be larger than the gap between 
the probe and the surface to be probed. 
Note that this as well as all subsequent 
motions are in incremental mode) 
(Backs off by 2 mm. GOO is implied. It 
is assumed that the overshoot is less 
than2 mm) 

(Very low approach speed, to ensure 
accuracy) 

(Z-coordinate at the skip signal stored, 
which corresponds to position B) 

(Probe positioned at the center of the 
pocket) 

(Probe approaches the bottom of the 
pocket) 

(Z-coordinate corresponding to position 
D stored) 

(Depth of the pocket calculated. Diameter 
of the probe does not come into the pic­
ture) 

(Approaches the left side of the pocket) 

(X-coordinate at position C stored) 

(Approaches the right side of the pocket) 

(X-coordinate at position E stored) 
(Length of the pocket calculated, in 
which diameter of the ball has been 
taken into account) 
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ZlO; 

X50; 

Z- 10; 

G31 X-100 F200 ; 

X2 ; 

G31 X-5 FlO; 

#104 = #5061; 

X5; 

ZlO ; 

X-120 ; 

Z-1 0 ; 

G31 XlOO F200; 

X- 2; 

G31 X5 FlO ; 

#105 # 5061 ; 

#5 02 = #10 4 - #105 - 5; 

X-5; 

G28 ZO ; 

G28 XO YO ; 

M30 ; 

(Approaches the right side of the 
block) 

(X-coordinate at position F stored) 

(Approaches the left side of the block) 

(X-coordinate of position A stored) 
(Length of the block calculated, in 
which diameter of the ball has been 
taken into account) 

The Y-dimensions of the pocket and the block can be determined 
in a similar manner. This has been left as an exercise for the readers. 
Probing on a lathe is done in a similar manner, where the probe is 
generally held like an internal tool. 

11.4 Finding Center of a Hole 
Sometimes the workpiece is a cast part with a preexisting hole, and 
the part program is written with workpiece zero point at the center of 
the hole. This requires that the spindle be exactly aligned with the axis 
of the hole, for determining work offsets along the X- and theY-axis. 
This is typically done with the help of a spindle-type dial indicator. 
The end of the lever is made to touch the hole at some point, and the 
spindle is given a very low rpm. The X- and / or Y-positions are 
adjusted so as to get the same dial reading in all angular positions, 
which locates the center of the hole. Though this method is theoreti­
cally correct, and is used quite often, it involves trial and error. As a 
result, the time taken in datum setting largely depends on the skill of 
the operator. We will now see how this can be done automatically, 
using a touch probe. 

Consider the hole shown in Fig.l1 .3. The principle involved in 
locating the center is very simple. The center would lie on the point of 
intersection of the perpendicular bisectors on any two chords. As a 
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FIGURE 11.3 Locating center of a hole. 

special case, if the two chords are chosen to be parallel to the X- and 
Y-axes, respectively, then the X-coordinate of the center would be 
same as that of the mid-point of the chord that is parallel to the X-axis. 
Similarly, theY-coordinate of the center would be same as that of the 
mid-point of the chord that is parallel to the Y-axis. When the end­
points of the chords are found using a touch probe, its diameter comes 
into the picture, because the circle is not touched by the same point on 
the ball. (The points on the ball, which touch the circle, are shown by 
dots in Fig. 11.3.) This, however, does not affect our calculations 
because of symmetry, as can be observed in the figure . 

A macro, based on this principle, will be developed now. To locate 
the center of a hole, one simply has to place the ball of the probe some­
where inside the hole (say, position A), and then call the macro. After 
locating the center, the macro would place the workpiece zero point at 
that point, by editing the associated system variables. 
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08022 (LOCATING 

G21 G94; 

HOLE CENTER ON MILL); 

#100 = #5041; 

G91 G31 X-200 F200; 

GOO X2; 

G31 X-5 FlO; 

#101 = #5061; 

G31 X200 F200; 

X-2 ; 

G31 X5 FlO; 

(X-coordinate at the initial position 
A stored. Refer to Table 3.11) 
(Approaches position B) 

(X-coordinate of the center of the 
ball stored, at position B) 

(Approaches position C) 

#102 #5061; (X-coordinate of the center of the 
ball stored, at position C) 

#500 [ [#101 + #102] I 2]; (X-coordinate of the center 

G90 X#lOO; 

G91 G31 Y- 200 F200; 

GOO Y2; 

G31 Y-5 FlO; 

#103 = #5062 ; 

G31 Y200 F200; 

Y-2; 

G31 Y5 FlO; 

#104 #5062 ; 

#501 [ [#103 + #104] I 2]; 

G90 X#500 Y#501; 

G65 P8008; 

M30; 

calculated) 

(Probe moves to position A) 
(Approaches position D) 

(Y-coordinate of the center of the 
ball stored, at position D) 

(Approaches position E) 

(Y-coordinate of the center of the 
ball stored, at position E) 

(Y-coordinate of the center 
calculated) 

(Probe moves to the center of the 
hole) 

(Program 08008, which is given in 
Chap. 5, shifts the current work­
piece zero point to the current tool 
position, on a milling machine. Just 
replace M30 by M99 in the last block 
of 08008, for using it as a macro/ 
subprogram) 

This macro, however, would not work if additional WCS, such as 
G54.1 Pl, is currently active, or when the diameter of the hole is more 
than 200 mm. It is left as an exercise for the readers to make this macro 
suitable for these cases. Additionally, they may also try to calculate 
the radius of the hole. For this, calculate the distance between the 
center of the hole and any of the B, C, D, or E positions, using the 
coordinate-geometry formula, and add to it the radius of the ball. 
This would require theY-coordinate of the initial tool position (at A), 
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if positions B or C are selected for calculations. To avoid this, use 
positions D or E. The center of a rectangular pocket can be deter­
mined in a similar manner. 

11.5 Finding Angle of an Edge 
Sometimes the machining program for a rectangular block is written 
with program zero point at, say, the lower left corner of the block, with 
the coordinate axes being parallel to its edges. In such a case, a very 
accurate (hence expensive) fixture is needed, to hold the workpiece 
properly. An inaccurate fixture would hold it incorrectly, as shown in 
Fig. 11.4, where the coordinate system used for programming (X-Y) 
does not coincide with the workpiece coordinate system (Xw-YJ. A 
solution to this problem would be to shift the workpiece zero point to 
point 0 , and then execute the machining program using coordinate­
system-rotation feature (G68) . Calling macro 08008, after placing 
the tool at point 0, would shift the coordinate system, as was done in 
the previous example. For commanding G68, the angle e (in degrees) 
must be known. The algorithm would be 

1. Find angle e. 
2. Find X- andY-coordinates of point 0. 

3. Place the tool at point 0 (at a safe height from the 
workpiece) . 

4. Call 08008. 

___ x 

FIGURE 11.4 Finding the angle of an edge. 
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5. Command G17 G68 XO YO R<O> (XO YO, which is the center of 
rotation, can be omitted because the current tool position auto­
matically becomes the center of rotation, if it is not specified). 

6. Execute machining program. 

7. Command G69 (cancel coordinate rotation) . 

8. End of program. 

The X- andY-coordinates of point 0 , and angle e, can be deter­
mined using touch probes. For this, the probe would need to touch 
the orthogonal edges of the workpiece at three points, as shown in 
Fig. 11 .4. Let the coordinates of probe center be (xA' yA), (xC' Yc), and 
(x

0
, y

0
) , respectively, corresponding to points A, C, and D. The 

equations given below can be used for necessary calculations. (Try 
to derive these, using coordinate geometry.) 

The equations of lines CD and AB (which is orthogonal to CD) 
would be 

y = Yo - yc (x-x )+y 
CD Xo- Xc C C 

- Xo -xc 
y AB - - (X-XA)+yA 

Yo- Yc 

The coordinates (x6, y 6) of the point of intersection of these lines (point 
B) can be found out by solving these equations simultaneously, which 
gives 

2 x =mxc -mYc +xA+myA 
B m2+1 

- -mxc + Yc +mxA +m2yA 
Ys- m2+l 

where 

Angle 8 would be given by 

e = tan-l m 

Finally, the coordinates of the program zero point 0 would be 

x0 = x6 +fi. rcos(8+45) 

y0 = y 6 +fi. r sin(8+45) 

where r is the radius of the ball of the probe. 
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The given algorithm, along with these equations, can be used for 
developing a macro for this problem. Set parameter 6004#0 to 1, for 
having the solution range of tan-1 (ATAN function) between -180° 
and 180°, though even if the range is 0° to 360° (with 6004#0 set to 0), 
it is mathematically equivalent. Therefore, do not worry about this 
parameter, if, say, 355° in place of the "expected" -5° does not look 
awkward to you. It is left as an exercise for the readers to complete 
this problem. 

11.6 Adjusting Wear Offset 
As a final example, consider the case of getting oversized parts on a 
lathe, due to tool wear. Though this problem also can be solved by 
adjusting geometry offset, it is not a recommended method. The rea­
son is that when the worn-out insert is replaced with a new insert, the 
original geometry offset would need to be used again. If the original 
values are lost, the time-taking procedure of setting geometry offset 
would have to be repeated. Therefore, the recommended practice is 
to start with zero wear offset for a new insert, and adjust it to take 
care of tool wear. When the insert is finally replaced with a new insert, 
the wear offset values are set to zero again. Geometry offset is never 
manipulated. This obviates the need for repeating the offset setting 
procedure. 

When an external tool wears out, the external diameters on the 
part become larger than their programmed values. On the other hand, 
if an internal tool wears out, the internal diameters become smaller. 
This requires that, for a given programmed diameter, an external tool 
be brought nearer to the spindle axis, and an internal tool be moved 
away from it, by an amount equal to the observed error, to compen­
sate for the wear. This can be done by manipulating the offset dis­
tances, which define the position of the coordinate system with 
respect to the fixed machine coordinate system. Since the control uses 
the algebraic sum of geometry and wear offsets (as well as all other 
offsets), the change in wear offset for an external tool would be nega­
tive, whereas it would be positive for an internal tool. Note that all 
the offset values are "diameter values," if diameter programming is 
being used. 

The method of offset correction is the same for both internal and 
external tools (except for the opposite signs for the required change in 
wear offset values, and addition/ subtraction of the ball diameter to / 
from the observed diameter while measuring the part diameter). 

Offset correction for an external tool is considered here, as an 
example. Since the amount of error remains same on all diameters, any 
convenient diameter can be chosen for determining the error. In the 
example given in Fig. ll.S, <)>20 diameter has been arbitrarily chosen for 
measurement, at Z- 25 axial position. 
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F IGURE 11.5 Diameter measurement on a lathe. 

The algorithm for the macro 0 8023 is straightforward: 

1. Determine the offset number of the current tool (which was 
used to machine the workpiece), using 

<current tool number> = FIX[#4120/100] 

<offset number of the current tool> 
= #4120 - <current tool number> x 100 

2. Measure the specified diameter, at the specified location (X20 
Z-25, in this example) . 

3. Subtract the specified diameter (20, in this case) from the 
obtained diameter, to determine the error due to tool wear. 

4. Determine the system variable for wear offset corresponding 
to the offset number being used (refer to Tables 3.2 and 3.3). 

5. Subtract the error from this system variable that contains the 
current value of wear offset corresponding to the offset num­
ber being used. 

6. Return to the calling program. 

08023 (WEAR OFFSET CORRECTION ON LATHE) ; 

MO S; 

#1 00 = #4120; 

#101 = FIX[#41 20 

(It is expected that this macro would be 
called with the spindle not rotating. 
However, as a safety measure, MOS is 
explicitly commanded here) 

(Current tool code stored) 

10 0 l ; (Current tool number determined) 
#102 = #4120 - #10 1 * 100; (Offsetnumberofthecurrenttooldeter­

mined . Step 1 complete) 

G28 UO; (X-home) 
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G28 WO; 

T#20; 

GOO Z[#26- #7 I 2]; 

X[#24 + #7 + 4]; 

#103 #4005; 

G98; 

G31 U-10 FlO; 

#104 #5061; 

#105 #104 - #7; 

Probing 235 

(Z-home) 

(The probe becomes the current "tool") 
(Center of the probe at the specified Z­
coordinate, where measurement is to be 
made. The radius of the probe has been 
subtracted from the specified value, 
assuming that the tip of the probe is its 
reference point) 
(Probe at a clearance of 2 mm from the 
diameter to be measured. Make neces-
sary changes in positioning toolpath, if an 
internal diameter machined by an inter­
nal tool is being probed. Moreover, both 
the plus signs would change to minus 
signs, for an internal measurement) 
(S tores 98 or 99, depending on which 
one of G98 and G99 is currently active) 
(Since the spindle is stationary, this macro 
would not work in G99, the feed per rev-
olution mode, because the feedrate 
would become zero with zero rpm) 
(Stops at the surface, where the diame­
ter is to be measured) 
(X-coordinate of the center of the probe 
ball stored when it touches the part) 
(Diameter of the part calculated. In the 
case of an internal diameter, the diame-
ter of the ball would have to be added 
here. Step 2 complete) 

#106 #105 - #24; (Error due to wear calculated. This 
quantity would be negative if probing 
is being done for an internal tool. Step 3 
complete) 

#107 10000 + #102; (The system variable for wear offset, 
corresponding to the offset number 
being used, is determined. Replace 
10,000 by 2000, if only 64 offset num­
bers are available. 10,000 series is for 99 
offset numbers. Step 4 complete) 

#[#107] #[#107]- #106; (Errorsubtractedfromthecurrent wear 
offset value. This expression is also cor­
rect also for internal measurement, since 
the sign of #106 would automatically 
become negative. Step 5 complete) 

G2 8 UO; (X-home) 
G28 WO; (Z-home) 
T#lOO; 

G#l03; 
M99; 

(Original tool called, with the updated 
wear offset value) 
(Modal G-eode restored) 

(Return to the calling program. Step 6 
complete) 
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Wear offset correction for the Z-axis can be done in a similar 
manner, which is left as an exercise (usually, radial wear is more 
serious than the axial wear). One would need to touch a known 
Z-surface (which has been faced by the tool to be probed), and 
determine the error. The program for both internal and external 
tools would be the same in this case. The Z-axis wear offset system 
variables belong to #2100 series for 64 offsets, and #11000 series 
for 99 offsets (refer to Tables 3.2 and 3.3). 

In order to use macro 08023, it would need to be called immedi­
ately after machining by the tool, for which wear adjustment is to be 
done. It is possible to continue machining further, with the new wear 
offset values. In fact, in the case of suspected inaccuracy, a single 
straight-turning command, with a small depth of cut, can be given 
first. The main machining codes can be given after calling this macro. 
This would automate the inspection and correction process. One may 
use this technique after, say, every 10 parts, which would ensure virtu­
ally zero rejection. The number of machined parts, in the current 
machining session, gets stored in system variable #3901 (refer to Sec. 
3.5, subsection Number of Machined Parts) . The main program may 
call/ skip the probing macro by 

<set-up commands> 

<straight turning> 

IF (#3901 LE 10] GOTO 100; 

G65 P8023 T_ X_ Z_ D_; 

#3901 = 0; 

N100; 

<machining program> 

M30; 

where the part count is reset to zero whenever the macro is called. It 
is left as an exercise for the readers to think how to implement the 
same logic if the part count variable #3901 is not to be reset (since it 
may be desired to keep track of the total number of the machined 
parts in the current machining session). 

The arguments of macro call for 08023 pass data for the following: 

T (#20) =four-digit tool code for the probe 

X (#24) =diameter to be probed 

Z (#26) =axis position where probing is to be done 

D (#7) =diameter of the probe ball 

Though one can develop macros for specific probing require­
ments, the probe manufacturers usually supply probes with software 
for common probing applications. 
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12.1 Introduction 

CHAPTER 12 
Communication with 

External Devices 

Adequate description of how to control an external device through the 
PMC has already been given in Sec. 3.5 (subsection Interface Signals). 
Knowledge of Ladder language, however, is a prerequisite for pro­
gramming the PMC. Additionally, one must also know input types 
(source/ sink type), output types (source / sink/ relay type), and wiring 
techniques for a PLC. Moreover, if noncontact-type proximity switches 
are desired to be used for sensing the presence of an object, one must 
know the characteristics of such sensors (source / sink type). The whole 
thing is pretty vast, and can be described in detail only in a text 
designed especially for this purpose. However, for the convenience of 
readers, a brief description is given in this chapter, the minimum one 
must know. The main purpose here is to refresh the memory, rather 
than explaining the fundamental concepts meticulously. Hence, a 
reader who is completely new to PLC applications would need to refer 
to some basic text on PLC. 

12.2 Switching Principle 
The input / output digital signals of a PLC are based on the principle 
of saturation-mode operation of a transistor, when it starts working 
like an electronic ON/ OFF switch. (Before saturation, it serves the 
purpose of signal amplification.) 

The representation of an NPN transistor is shown in Fig. 12.1, 
along with its functional model. I6, IC' and IE are base current, collec­
tor current, and emitter current, respectively (IE= I6 + Ic). The variable 
resistance between collector and emitter (RcE), to which power source 
( + V cc) and load are connected, can be thought of as being controlled 
by the base current; when the base current is zero, the resistance is 
infinite, which decreases with an increase in base current. As a result, 
when the base current increases, the collector current also increases. 

237 
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Collector (C) 

lc 

Emitter (E) 

Representation of 
an NPN transistor 

fiGURE 12.1 An NPN transistor. 

Is Base (B) _ ._-I 

Collector (C) 

Emitter (E) 

Functional model of 
an NPN transistor 

The ratio of Ic to I8 is called the current gain of the transistor, a typical 
value being 100. (Since the current gain is typically very high, Ic and 
IE would be nearly equal.) This describes the use of a transistor as a 
current amplifier. However, beyond a certain value of base current, 
RcE becomes nearly zero. As a result, Ic does not increase any further, 
and the transistor is said to be saturated. In saturation mode, Icdepends 
on external resistance (load) and power supply, with the transistor 
offering nearly zero resistance to the current flow. Such an ideal tran­
sistor characteristic is shown in Fig. 12.2. 

Thus, a transistor can be used as an electronic switch, in saturation 
mode. For such a use of a transistor, the circuit (regulating the base 
current) is designed in such a manner that the transistor remains 
either OFF (I8 = 0, resulting in Ic = 0) or becomes saturated. 

The digital inputs / outputs of a PLC use similar electronic switch­
ing. However, to protect the internal circuits from external currents, 
generally some kind of optoisolator is used. An optoisolator is a device 
consisting of a light-producing element, such as an LED, and a light­
sensing element, such as a phototransistor. When a voltage is applied 

FIGURE 12.2 An lc 
ideal transistor 
characteristic. 

Saturation mode 

~--------------------~-- 16 
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f iGURE 12.3 
Typical PLC input 
circuits . 

+ 

DC signal 

AC signal 

To PLC 

To PLC 

to the LED, light is produced that is sensed by the photodetector. 
Sufficient light causes the phototransistor to saturate and it starts 
conducting. This arrangement completely isolates the PLC from 
external current/voltage, as the connection between the two is 
through a light beam only. For AC inputs, two opposing LEDs are 
used. Figure 12.3 shows this arrangement for both DC and AC input 
signals. DC signals can be given to AC inputs also, without bothering 
about the polarity. Hence, AC-type input is actually AC/DC-type 
input. A current-limiting resistor is needed to limit the current through 
the LED. The solid-state output terminals also generally use a similar 
isolation technique. 

12.3 Input Types and Wiring 
A commercial PLC provides for several types of inputs such as DC-, 
AC-, and analog-type "normal" inputs, apart from inputs for special 
functions such as high-speed input and immediate input. The PMC, 
however, usually accepts only 24-V DC-type normal inputs. A restric­
tion is that an external power source must not be used for providing 
input signals; 24-V DC from inside the PMC remains available for 
this purpose, on a pin of each 50-pin connector on the input/ output 
unit (on pin number BOl of CB104/ 105/106/ 107 on Oi control: 0 Vis 
available on pin number AOl) . This is because the PMC generally 
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does not have PLC-like optoisolators inside it. Note, however, that 
various types of inputs/ outputs, with or without isolation, can be 
made available as options, by inserting certain input/ output cards in 
the input/ output unit of the PMC. The standard configuration usu­
ally accepts only 24-V DC sink/ source inputs, and provides source­
type outputs (designed for powering external devices, such as a relay, 
working on a 24-V DC external power supply). Our discussion in this 
chapter would remain limited to these input/ output types only. 

The input-signals (referred to as DI signals) to the PMC, through 
connectors CB104/ 105/ 106/ 107, are generally sink type (a type that 
drains energy). Hence, +24 V, as ON input signals, must be provided 
at respective terminals. Some Dl signals, however, can be set to either 
sink type or source type, though a source-type Dl signal is undesir­
able from the viewpoint of safety. This is because a source-type input 
requires that 0 V, as ON input signal, be provided to the input termi­
nal. This is dangerous, because a grounded input line (due to a fault) 
would be interpreted as ON input signal. Hence, it is recommended 
that all DI signals be used as sink-type signals. 

Figure 12.4 explains the method of providing sink-type DI signal 
(digital, of course) to the PMC. The wiring for source-type DI signal 
would be similar, with the difference that instead of +24 V, 0 V avail­
able at pin number A01 is used as ON input signal. DI signal X0004.0 
through X0004.7 (which are provided through connector CB106) can 
be used both as source- and sink-type signals. COM4 terminal (termi­
nal number A14) of CB106 is connected to 0 V (terminal number A01) 
when these signals are used as sink-type signals. For source-type 
applications, COM4 is connected to +24 V (terminal number B01). 
COM4 must never be left open, otherwise X0004.0 through X0004.7 
would always remain OFF, irrespective of input signal condition. The 
external switch represents the discrete switching-action (ON/ OFF) 
by an external switch / sensor. 

12.4 Connector Pin Assignment 
The block diagram of the general arrangement (on Oi control) for 
input/ output connections is shown in Fig. 12.5. The PMC resides in the 
CNC control unit. It is connected to the 1/ 0 unit through an 1/0 link 
(which is a standard Fanuc cable). The 1/0 unit, terminal strip, and 
relay PCB can be seen in the MTB-designed electrical cabinet of the 
machine. On the 1/0 unit, four 50-pin connectors (CB104, CB105, 
CB106, and CB107) are present for receiving/ sending input/ output 
signals. These are connected to the terminal strip through four ribbon 
(flat) cables. Every pin of these connectors is used for some specific 
input/ output signal, as given in Tables 12.1 and 12.2. Input wires from 
switches/sensors are directly connected to the terminal strip, but 
output devices are driven through relays, as these may require high 
current and / or AC supply. 
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50-pin CB104 connector I Pio oo CB104 oooo~im 

1 +24V (internal supply) I 

I 
Terminal No. CB104(B01) 

Terminal No. CB104(A02) 

Terminal No. CB104(B02) 

Terminal No. CB104(A03) 

'2 
0 

Terminal No. CB104(B03) 
0~ 
~ § 
a_ o 

" Terminal No. CB104(A04) o-f--E 
.gj 
:§. Terminal No. CB104(B04) 

Terminal No. CB104(A05) 

Terminal No. CB104(B05) 

Terminal No. CB104(A06) 

1.---

r '"•m•l ••• for input (DI 
ch/sensor 
) signals 
wiring) (external 

Dl signal I _j- l 
XOOOO.O L __ _j 

Dl signal I - - l 
X0000.1 L-- _j 

Dl signal I - - l 
X0000.2 L - - _j 

Dl signal I - - l 
X0000.3 L - - _j 

Dl signal I - - l 
X0000.4 L - - _j 

Dl signal I - - l 
X0000.5 L - - _j 

Dl signal I - - l 
X0000.6 L - - _j 

Dl signal I - - l 
X0000.7 L - - _j 

Dl signal I - - l 
X0001 .0 L-- _j 

I 
I 
I 
I 

FIGURE 12.4 Input wiring for sink-type Dl signals. 

Typically, 96 inputs (plus 24 inputs for manual pulse generators 
and eight for DO-alarm detection) and 64 outputs are available. On 
Oi control, XO to X11 (each consisting of eight bits, e.g., XOOOO.O 
through X0000.7) are used for 96 DI signals, X12 is used for MPG, 
X13 and X14 (eight signals each) for additional MPGs (if any), and 
X15 (eight signals) for DO-alarm detection (e.g., overcurrent or 
abnormal temperature inside DO driver, caused by overload due to 
reasons such as accidental grounding of power cable). YO to Y7 
(each consisting of eight signals, e.g. , YOOOO.O through Y0000.7) are 
used for DO signals. 

The 96 inputs and all 64 outputs can be used for any purpose. 
However, if the machine has Fanuc MOP, X4 to X11 are connected to 
various keys of MOP. Thus, only XO to X3 (32 signals) are general­
purpose DI signals, some of which might be used by the MTB, and 
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CNC control unit 

~ 
1/0 link 

Input/output unit 

Ribbon cable 

Discrete input signals from 
external switches/sensors - Terminal strip 

Relay PCB 

Power to output devices, such as 
solenoid of a pneumatic cylinder 

FIGURE 12.5 Block diagram of input/ output connections with PMC. 

CB104 CB105 

Pin No. Row A RowB Pin No. Row A RowB 

01 ov +24V 01 ov +24V 

02 XOOOO.O X0000.1 02 X0003.0 X0003.1 

03 X0000.2 X0000.3 03 X0003.2 X0003.3 

04 X0000.4 X0000.5 04 X0003.4 X0003.5 

05 X0000.6 X0000.7 05 X0003.6 i X0003.7 

06 X0001.0 X0001.1 06 X0008.0 X0008.1 
··-·-·--·------ ---··--·------ --------·-·--··- ---·-·---

07 X0001.2 X0001.3 07 X0008.2 X0008.3 

08 X0001.4 X0001.5 08 X0008.4 X0008.5 

09 X0001.6 X0001.7 09 X0008.6 X0008.7 

10 X0002.0 X0002 .1 10 X0009.0 X0009.1 

11 X0002.2 X0002.3 11 X0009.2 X0009 .3 

12 X0002.4 X0002.5 12 X0009.4 X0009.5 

TABLE 12.1 Pin Assignment for CB104 and CB105 Connectors 

; 

.. 
< 
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CB104 CB105 
I-- I Row A JRowB Pin No. Pin No. 1 Row A IRowB-

13 X0002 .6 X0002.7 13 X0009.6 X0009.7 
-- ,_ _____ 

14 14 

15 15 

16 YOOOO.O Y0000.1 16 Y0002.0 Y0002.1 

17 Y0000.2 Y0000.3 17 Y0002.2 Y0002.3 
- 1---

18 Y0000.4 Y0000.5 18 Y0002.4 Y0002.5 

19 Y0000.6 Y0000 .7 19 Y0002.6 Y0002 .7 

20 Y0001.0 Y0001.1 20 Y0003.0 Y0003.1 

21 Y0001.2 Y0001.3 21 Y0003 .2 Y0003.3 

22 Y0001.4 Y0001 .5 22 Y0003.4 Y0003.5 

23 Y0001.6 Y0001.7 23 Y0003.6 Y0003.7 

24 DO COM DOC OM 24 DOC OM DOC OM 
--

25 DO COM DOC OM 25 DOC OM DOC OM 

T ABLE 12.1 (Continued) 

CB106 CB107 
-

RowA/ RowB Pin No. 
t--- - r-- -

Pin No. Row A RowB 

01 ov +24V 01 ov +24V 
·------ ------------ ----------- - -----------------···-··-

02 X0004.0 X0004.1 02 X0007 .0 X0007.1 
--------------1------- ---------- +----

03 X0004.2 X0004.3 03 X0007 .2 X0007.3 
--

04 X0004.4 X0004.5 04 X0007.4 X0007.5 

05 X0004.6 X0004.7 05 X0007.6 X0007 .7 

06 X0005.0 X0005.1 06 X0010.0 X0010.1 

07 X0005.2 X0005.3 07 X0010.2 X0010.3 

08 X0005.4 X0005.5 
--------t-:-:-------1------

08 X0010.4 X0010.5 
---------

09 X0005 .6 X0005 .7 09 X0010.6 X0010.7 

10 X0006.0 X0006.1 10 X0011.0 X0011.1 

11 X0006.2 X0006.3 11 X0011.2 X0011.3 

12 X0006.4 X0006.5 12 X0011.4 X0011.5 

13 X0006.6 X0006.7 13 X0011.6 X0011.7 

TABLE 12.2 Pin Assignment for CB106 and CB107 Connectors 
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CB106 CB107 
f- --- - -

Pin No. Row A 1 RowB 
-·-.-- ---

Pin No. : Row A Row B 

14 COM4 14 

15 15 

16 Y0004.0 Y0004.1 16 Y0006.0 Y0006 .1 

17 Y0004.2 Y0004.3 17 Y0006.2 Y0006.3 

18 Y0004.4 Y0004.5 18 Y0006.4 Y0006.5 

19 Y0004.6 Y0004.7 19 Y0006.6 Y0006.7 

20 Y0005.0 Y0005.1 20 Y0007.0 Y0007 .1 

21 Y0005.2 Y0005.3 21 Y0007 .2 Y0007.3 

22 Y0005.4 Y0005.5 22 Y0007.4 Y0007.5 

23 Y0005.6 Y0005.7 23 Y0007.6 Y0007.7 

24 DO COM DO COM 24 DOC OM DO COM 

25 DOCOM DOC OM 25 DOC OM DOCOM 

TABLE 12.2 Pin Assignment for CB106 and CB107 Connectors (Continued) 

the rest remain free. Similarly, several of the output signals are con­
nected to the LEDs of the Fanuc MOP. However, in many cases, the 
MTB designs its own MOP, and selects which signal to use for which 
purpose. The unused signals can be used for communicating with 
external devices. One would need to look into the electrical-interface 
manual supplied by the MTB to find out which signals have been 
used by them. The remaining signals are free, and can be used by 
the users. 

If the number of DI / DO points is not sufficient, additional I/O 
units would need to be added. On the other hand, if even the minimum 
available points exceed the requirement, the MTB may not provide 
connection for all the four connectors. In such cases, the terminal strip 
typically does not have physical connection for CB107. 

12.5 Discrete Sensors for Sourcing/Sinking PLC Inputs 
In the standard PMC configuration, only discrete input / output 
signals are allowed. Input signals can be provided by mechanical 
switches (momentary- or maintained-type ON/ OFF switch, or a limit 
switch) or proximity sensors. The proximity sensors have an electronic 
switching system inside them. These are typically normally open (N/ 0) 
type, and when an object comes within their designed range, the 
contact closes, simulating a switching action. 
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Vee Vee 
Output r-- -------, r-- -------, 

I 
I .------'-----, 

I 
I 

I Sensor Sensor I 
I circuitry circuitry I 
I L__--.--------' I 
I I 
L _________ _) L _________ _) 

Output 

An NPN (sinking) sensor A PNP (sourcing) sensor 

FIGURE 12.6 Discrete proximity sensors. 

Since an internal transistor is typically used for switching, such 
sensors can be both PNP and NPN types. The PNP-type sensor 
supplies + V cc on its output terminal, whereas an NPN-type sensor 
connects it to ground (0 V), when switched ON. In the OFF state, 
the output terminal remains electrically open. Thus, a PNP sensor 
provides a sourcing output (+Vee), and hence it is called a source­
type sensor. Similarly, an NPN sensor is called a sink-type sensor 
(since it draws current through its output terminal) . Figure 12.6 
shows both types of sensors. 

Electrical circuit can be complete only if the current supplied by a 
source is drained to a sink. Therefore, a sourcing sensor can only be 
connected to a sinking input of PLC. Similarly, a sinking sensor is 
connected to a sourcing input. While both possibilities exist, usually 
all PMC inputs are configured as sink-type inputs, so only source­
type sensors are connected to these. Figure 12.7 shows how a source­
type sensor is connected to a sink-type PLC input. Connection to the 
PMC is done in a similar manner. (The input of the PMC may not 
have optoisolation.) 

A limitation of sink-type PLC inputs is that both the sensor and 
the PLC must use the same V cc A sourcing PLC input, on the other 
hand, allows the sensor to work on a different V cc also; only the 
ground should be common. This is useful when the operating-voltage 
requirements of the sensor and the PLC are different. Such an arrange­
ment is shown in Fig. 12.8, where a sink-type sensor is connected to a 
source-type PLC input. Note that the inputs of the PLC shown in this 
figure are actually source/sink type (AC type) that can be wired as 
both source- and sink-type. Here, source-type wiring is shown, which 
is needed for a sink-type sensor. The operating voltages of the PLC 
and the sensor, V ccJ and V cc2, respectively, can be the same or different. 
However, as discussed earlier, this type of wiring is not recommended 
for safety considerations. 
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Vee 
,-- ------- -, 

Sensor 
circuitry 

L __ 

Source-type sensor 

,-------------, 
IN1 

L------------
PLC 

(only three sink-type inputs shown) 

FIGURE 12.7 Sourcing sensor connected to a sinking PLC input. 

12.6 Output Types and Wiring 
In commercial PLCs, several types of outputs are available, employ­
ing different technologies. The PMC used in Oi control, however, uses 
N-channel enhancement-type MOSFET switching technique. The 
switching action is similar to that of an NPN transistor, where source, 
gate, and drain of MOSFET correspond, respectively, to emitter, base, 
and collector of NPN transistor. 

A major difference between a MOSFET and a transistor is that 
MOSFET is voltage-controlled, whereas transistor is current-controlled 
(for required biasing). When a voltage is applied at the gate, an electro­
static field is generated which creates a conducting channel (P-type or 
N-type) between drain and source. No current flows through the 
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,------------
IN1 

IN2 

r--

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 ,----'------, 

I 
I 
I 

Sensor 
circuitry 

I L___.--_____J 

L- _ .___ ____ __, 

COM I 
Vcc1 e--- --<-.-' I l ____________ _j 

PLC 
(only three source-/sink-type inputs shown) 

FIGURE 12.8 Sinking sensor connected to a sourcing PLC input. 

gate. This not only can provide isolation between input and output 
circuits, but the input load requirement also remains negligible, 
which is the main advantage of a MOSFET over transistors. 

The conductivity of the conducting channel between drain and 
source of a MOSFET depends on the voltage level on the gate. As in 
case of switching using transistors, MOSFET also is used for switching 
in its saturated mode of operation (i.e., the drain current is either zero 
or remains constant at its maximum value, for a given gate voltage). 
Figure 12.9 explains the switching action of an N-channel MOSFET. 
(The other type is P-channel MOSFET. The difference between the 
two is at the construction level. Overall circuit connection is same, 
except that polarity of source and drain changes. Its switching action 
is similar to that of a PNP transistor.) When the switch is pressed, the 
LED lights up. Notice that the high resistance connected to the gate 
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FIGURE 12.9 An 
N-channel 
enhancement-type 
MOSFET as a 
switch . 

5V 

Switch 9 

1 Mn 

consumes negligible power. Refer to a basic text on solid-state devices 
for more information about MOSFETs. 

The output signals of PMC are designed to be used as sourcing 
outputs, with MOSFETs used as switching devices. A typical out­
put wiring for CB104 (wiring for CB105, CB106, and CB107 are 
similar; refer to Tables 12.1 and 12.2 for pin connections) is shown 
in Fig. 12.10, where external relays, powered by external 24-V DC 
power supply, are being controlled by DO signals. Relays are used 
because a MOSFET cannot take very heavy current. Moreover, it 
cannot be used for AC devices. A relay obviates such problems. 

All output terminals must be wired independently, as shown in 
the figure . Never short two (or more) output terminals to drive a sin­
gle device. Also note the presence of reverse-biased diodes, connected 
in parallel with each relay coil. Such a diode prevents excessive volt­
age built-up across the coil of the relay, when the MOSFET signal 
turns OFF. If unchecked, the developed voltage can rise up to several 
hundred volts, which can damage the MOSFET. The diode shunts the 
induced current, preventing voltage rise-up. In fact, some relays are 
manufactured with this diode preinstalled. 

A limitation of source-type outputs is that all output devices 
would have to work on the same Vee (though this does not matter 
because we use only relays as output devices, and we can always 
decide to use same type of relays), since Vee is connected to the com­
mon output-terminal (DOCOM). In a sink-type output (which is not 
available with PM C), 0 Vis connected to the common output-terminal, 
and Vee goes directly to output devices. Hence, it is possible to use 
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1/0 unit with 50-pin CB104 connector 
(only relevant circuit shown) 

DOC OM 

Terminal No. C8104 

DO signal 
(A24, 824, A25, 825) 

YOOOO.O Terminal No. C8104(A16) 

DO signal 
Y0000.1 Terminal No. C8104(816) 

DO signal 

Y0000.2 Terminal No. C8104(A17) 

DO signal 

Y0000.3 Terminal No. C8104(817) 

DO signal 
Y0000.4 Terminal No. C8104(A18) 

DO signal 
Y0000.5 Terminal No. C8104(818) 

DO signal 

Y0000.6 Terminal No. C8104(A19) 

DO signal 

Y0000.7 Terminal No. C8104(819) 

DO signal 
Y0001 .0 Terminal No. C8104(A20) 

DO signal 
Y0001.1 Terminal No. C8104(820) 

Terminal No. C8104(A01) 

+24V ov 

24-V stabilized 
power supply 

External wiring 

FIGURE 12.10 Output wiring for source-type DO signals. 

different V cc with different devices. This arrangement, however, has 
a serious drawback. If, due to some fault, the wire (on the PLC side) 
of an output device gets grounded, the device would switch ON 
without any output signal. Hence, from safety considerations, source­
type outputs are preferred over sink-type outputs. Of course, with 
PMC, there is no option other than source-type outputs. 
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CHAPTER 13 
Programmable 

Data Input 

This feature of a CNC machine is not really related to macro pro­
gramming. It has been included in this text because it is an advanced 
programming feature which many programmers are not aware of, 
even though it is very useful and its use is pretty straightforward. 

As the name suggests, programmable data input, which is com­
manded by GIO, is used to write certain data into the control such as 
offset values and parameters. GIO is an optional feature on some con­
trol versions, which would need to be activated if its use is desired. 
This feature does not allow reading the current values of such data; 
one can only overwrite these. 

The main applications of GIO are data input for the following: 

• Offset distances for workpiece coordinate systems 

• Offset distances for additional workpiece coordinate systems 
on a milling machine 

• Compensation values on a milling machine (length and 
diameter) 

• Compensation values on a lathe (radial/ axial values, nose 
radius, and tip number) 

• Parameter values 

GIO can also be used to feed tool-management data such as tool 
life and offset number. This is, however, not discussed in this chapter, 
since it is not a very common application. 

If the macro-programming feature is available on the machine, 
GIO is not needed in most cases. This is because system variables for 
all the offset distances and compensation values are available as read / 
write variables (refer to Sec. 3.5). In fact, system variables offer more 
flexibility, since the current values stored in them can also be read 
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which is not possible with G10. System variables are available even 
for some of the parameters (though very few of them are covered). 
However, for the remaining parameters and tool-life data, GlO has to 
be used, if their values are to be altered through a program. 

G10 can be used in both absolute as well as incremental modes, 
for specifying offset distances and compensation values. In absolute 
mode, the specified values simply overwrite the existing values; in 
incremental mode, the specified values are added (with sign) to the 
existing values. 

The effect of G10 is permanent, that is, it remains valid for all the 
subsequent machining sessions, until the values are changed again by 
GlOor otherwise. 

13.2 Data Input for WCS Offset Distances 
Offset distances for external and G54 through G59 workpiece coordi­
nate systems can be specified for each axis, in absolute or incremental 
mode. The syntax is the same for both lathe and milling machines: 

G10 L2 P_ X_ Y_ Z_; 

where 
L2 selects this category of data input, 
PO refers to external WCS, 
P1 refers to G54 WCS, 
P2 refers to GSS WCS, 
P3 refers to G56 WCS, 
P4 refers to G57 WCS, 
PS refers to G58 WCS, 
P6 refers to G59 WCS, 
X, Y, and Z contain the desired values for the respective axes. 

On a milling machine, G90/G91 would need to be commanded 
before G10, for selecting absolute/incremental modes. On a lathe, 
with G-eode system A, X/ Z are used for absolute values, and U / W for 
incremental values (theY-axis is generally not available on a lathe). 

Incremental mode is very useful for correcting the offset distances 
by the observed error. For example, on a milling machine, if it is 
desired to shift the G54 WCS by 0.1 mm in the negative Z-direction 
(so that the same tool now machines at a level of 0.1 mm lower than 
the previous level, without modifying the program), one may com­
mand (in MDI mode, if the adjustment is to be done only once) 

G91 G10 L2 P1 Z-0.1; 

Of course, this can also be done through the associated system variable 
(refer to Table 3.12): 

#5223 = #5223 - 0 . 1; 
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Both methods have the same effect. Selection between the two is a 
matter of individual choice. However, if the macro option is not 
enabled on the machine, G10 has to be used. In fact, G10 also is an 
optional feature, but now it is usually available with the standard 
control package. 

13.3 Data Input for Additional WCS Offset Distances 
Besides the six standard WCS, selectable with G54 through G59, 48 
additional WCS are optionally available on milling machines (in fact, 
this option is available for up to 300 additional WCS also). These are 
invoked in a program by 

G5"4 . 1 P<n>; 

or simply by 

G54 P <n> ; 

where n = 1 to 48. 
These are referred to as first additional WCS, second additional 

WCS, and so on, corresponding ton= 1, 2, .... A P-word must be 
specified with G54.1/G54. If it is not specified, P1 (implying first 
additional WCS) is automatically assumed by the control. 

Offset distances for these can be specified in a manner similar to 
that used in Sec. 13.2: 

G10 L20 P_ X_ Y_ Z_; 

where 
L20 selects this category of data input, 
P1 refers to first additional WCS, 
P2 refers to second additional WCS, 

P48 refers to 48th additional WCS, 
X, Y, and Z contain the desired values for the respective axes. 

Both absolute and incremental modes can be used. As an example, 
the following command would shift the first additional WCS by 0.1 mm 
in the positive Z-direction: 

G91 G10 L20 P1 Z0.1; 

This, of course, can also be done through system variables (refer to 
Table 3.12): 

#7003 = #7003 + 0.1; 
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13.4 Data Input for Compensation Values 
on a Milling Machine 

The description given here refers to C-type compensation memory 
(also referred to as C-type offset memory), used in Oi series controls. 
Compensation values for length (H-code) and radius (D-code) of 
a milling cutter can be specified as described in Table 13.1, where the 
P-word defines the offset number (typically, 1 through 400) and 
the R-word contains the corresponding compensation value. To 
provide compatibility with programs written for older control 
models, the system allows L1 to be specified instead of Lll. The 
permissible input range for compensation values, in IS-B (Increment 
System B), is given in Table 13.2. The valid range is much larger than 
what might actually be needed. 

Some examples are given below. Note that the given descriptions 
are valid only when these commands are executed sequentially: 

G90 GlO L1 2 PlO R5; 

G91 GlO L12 PlO R5 ; 

G90 GlO L13 PlO R- 0 . 5 ; 

Compensation Value 

(Enters 5 mm into offset number 10, as 
the geometry compensation value for 
D-code, making the tool radius equal to 
5 mm, assuming that the wear value for 
the radius is zero. Note that the D-code 
refers to the radius, not to the diameter) 

(Enters 5 mm incrementally into offset 
number 10, as the geometry compensation 
value for the D-code, making the tool radius 
equal to 10 mm, which was 5 mm earlier) 
(Enters -0.5 mm into offset number 10, 
as the wear compensation value for the 
D-code, making the tool radius equal 
to 9.5 mm) 

Format 

Geometry compensation va lue for H-code G10 L10 P - R_; 

Wear compensation va lue for H-code G10 L11 P - R_; 
--- -

Geometry compensation value for D-code G10 L12 P - R_; 

Wear compensation va lue for D-code G10 L13 P - R_; 

TABLE 13.1 Programmable-Data-Entry Format for H- and D-Code Values 

Geometry Compensation Value Wear Compensation Value 

Metric input Inch input Metric input Inch input 

± 999.999 mm ± 99.9999 inch ± 99.999 mm ± 9.9999 inch 

TABLE 13.2 The Valid Input Range for Compensation Values in IS-B 
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G91 G10 L13 P10 R-0. 05; (Enters -0.05 mm incrementally into off­
set number 10, as the wear compensa­
tion value for D-code, changing its value 
to -0.55, which makes the tool radius 
equal to 9.45 mm) 

G90 G10 L10 P10 R-500; (Enters -500 mm into offset number 10, 
as the geometry compensation value for 
H-code) 

G91 G10 L10 P10 R5; (Enters 5 mm incrementally into offset 
number 10, as the geometry compensa­
tion value for H-code, making it smaller 
by 5 mm, to become -495 mm. So, the 
same tool would dig 5 mm less into the 
workpiece, for the same program, if G43 
is being used for length compensation) 

G91 G10 Lll P10 RO. 5; (Enters 0.5 mm incrementally into offset 
number 10, as the wear compensation 
value for H-code. So, the wear value 
would increase by 0.5 mm, and hence, 
the same tool would dig 0.5 mm less into 
the workpiece, for the same program, if 
G43 is being used) 

Of course, system variables also can be used for the same func­
tionality. For example, the first and the last examples are, respectively, 
equivalent to (refer to Table 3.4) 

#13010 

#10010 

5; 

#10010 + 0.5; 

13.5 Data Input for Compensation Values on a Lathe 
Geometry as well as wear values for radial/ axial distances, nose 
radius, and tip number can be specified. A difference from the previ­
ously described formats is that no L-word is used for entering com­
pensation values on a lathe. The format is 

G10 P_ X_ Y_ Z_ R_ Q_; 

G10 P_ u_ v_ w_ c_ Q_; 

(Absolute mode) 

(Incremental mode) 

where 
PO refers to work-shift values, 
P1 through P64 refer to wear compensation values corre­
sponding to offset numbers 1 through 64 (assuming availabil­
ity of 64 offset numbers), 
P10001 through P10064 refer to geometry compensation val­
ues corresponding to offset numbers 1 through 64, 
X/U, Y / V (if theY-axis is available), and Z/W contain the desired 
values for the respective axes in absolute/incremental mode, 
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RIC contain nose radius in absolute/incremental mode, 
and Q contains tip number (in both modes) . The tip number 
or nose number has been arbitrarily defined by Fanuc for dif­
ferent tool orientations. Figure 13.1 shows Fanuc-defined tip 
numbers on a rear-type lathe. Note that the value of Q, speci­
fied for a geometry offset number, automatically assigns the 
same value to the corresponding wear offset number, and 
vice versa. In other words, the geometry and wear compensa­
tion values for Q are always same. This is a built-in safety 
feature of the control which eliminates the possibility of inad­
vertent error is specifying the tip number. 

Not all the compensation values in the G10 block need be speci­
fied. The unspecified values remain unchanged . Some examples are 
given below: 

G10 P10010 X-100 WS; (Corresponding to geometry offset number 
10, i.e., in the G10 row on the geometry offset 
screen, the radial compensation value is set 
to -100 mm, and the axia l compensation 
value is increased by 5 mm. Mixed coordi­
nate mode is allowed in GlO) 

G10 P10 xo zo; (Corresponding to wear offset number 10, 
the radial as well as the axial compensation 
values are set to zero. In other words, the 
radial and axial wear offsets are made zero, 
for the W10 row on the wear offset screen) 

G10 P10010 RO. 8 Q3; (Corresponding to geometry offset number 
10, i.e., in the G10 row on the geometry offset 
screen, the nose radius is set to 0.8 mm. The 
tip number is set to 3 on both geometry and 
wear offset screens, corresponding to offset 
number 10) 

In this case also, it is possible to use system variables to have the 
same result. The three GlO blocks given above can be replaced by the 
following blocks (refer to Table 3.2): 

For G10 P10010 X-100 WS; use 
#2710 = -100; 

#2810 = #2810 + 5; 

For G10 P10 XO ZO; use 
#2010 = 0; 

#2110 = 0; 

For G10 P10010 R0.8 Q3; use 
#2910 0.8; 

#2310 = 3; 

As another example, if it is desired to clear all the 64 offsets, G10 
can be executed in a loop. If 99 offsets are available, just replace 64 by 
99 in the given program: 
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R 

Imaginary tool nose number 1 

Imaginary tool nose number 3 

!7\ 
~R 

Imaginary tool nose number 5 

Imaginary tool nose number 7 

R : Reference point of the tool 
C : Center of the tool nose 
NR: Nose radius 

Note: 
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Imaginary tool nose number 2 

Imaginary tool nose number 4 

R 

Imaginary tool nose number 6 

R 

Imaginary tool nose number 8 

1. The usual method of offset setting establishes the imaginary point R as the 
reference point of the tool. There are eight possible orientations of this point 
with respect to the nose center C, depending on the type of the tool (left­
hand, right-hand, or neutral) and its orientation with respect to the workpiece. 
Each orientation has been assigned a unique tool nose number, 1 through 8. 

2. It is also possible to make the nose center C the reference point of the tool. 
This is done by adding the nose radius to the Z-value, and twice the nose 
radius to the X-value, while measuring the offset distances. In such a case, 
the assigned tool-nose number is 0. A serious drawback of this method is 
that this type of offset setting cannot be used for machining without radius 
compensation because of excessive error, even in straight turning and 
straight facing. The usual method of offset setting ensures that at least in 
straight turning and straight facing, there would be no error due to nose 
radius, even if radius compensation is not used. 

FtGURE 13 .1 Fanuc-defined tip numbers for different tool orientations on a 
rear-type lathe. 
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08024 (CLEAR LATHE OFFSETS WITH G10); 

#100 = 1; (Counter initialized) 
WHILE [ #100 LE 64] DO 1; (Start ofloop) 

G10 P#100 xo zo RO QO; (Clears wear offset) 

G10 P [ 10000 + #100] xo zo RO QO; (Clears geometry offset) 

# 10 0 = # 10 0 + 1 ; (Counter incremented) 

END 1 ; (End of loop) 

M9 9 ; (Returns to the calling program) 

The same thing can be done using system variables also, though 
the GlO method is simpler in this case: 

08025 (CLEAR LATHE OFFSETS WITH SYSVAR); 

#100 = 1; (Counter initialized) 

WHILE [#100 LE 64] DO 1; (Startofloop) 

[#2000 + #100] 0; (ClearsX-axiswearoffset) 

[ # 210 0 + # 10 0] 0 ; (Clears Z-axis wear offset) 
[#2200 + #100] 

[#2300 + #100] 

[#2700 + #100] 

[#2800 + #100] 

[#2900 + #100] 

#100 = #100 + 1; 

END 1; 

M99; 

0; 

0; 

0; 

0; 

0; 

(Clears nose radius wear offset) 

(Clears tip number) 

(Clears X-axis geometry offset) 

(Clears Z-axis geometry offset) 

(Clears nose radius geometry offset) 

(Counter incremented) 
(End of loop) 

(Returns to the calling program) 

13.6 Data Input for Parameter Values 
By now, the readers might have gotten an impression that there is no 
need to use GlO if the macro-programming option is available on the 
machine. The system-variable method, however, is limited only to 
whatever has been discussed so far. Most of the parameters do not 
have associated system variables. Therefore, GlO is the only method 
to change parameters through a program. Such a use of GlO is often 
referred to as programmable parameter entry. 

A difference from the previous applications of GlO is that it 
behaves as a modal code, when used for parameter entry. Once it 
enters parameter-entry mode, as many parameters as desired can be 
entered in subsequent blocks, until this mode is canceled by Gll . 
Another difference is that no decimal values are allowed. Therefore, 
if the parameter relates to some axis distance, the value must be 
specified in the least input increment (i.e., in microns in millimeter 
mode, and in steps of 0.0001 in. in inch mode) . Note that if the same 
parameter also has a system variable defined for it, millimeter or inch 
(as appropriate) value is used in such a variable. 
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Note that the parameter values that are most suitable for most of the 
cases are already set by the MTB. Any change in these values is not 
recommended because an incorrect setting may result in unpredicted, 
possibly dangerous, behavior of the machine, causing injury to the 
operator or damage to the machine or both. However, certain param­
eters, such as those for software overtravel limits, G-eode system 
selection (A, B, or C) on a lathe, straight-line positioning with GOO, 
calculator-type data entry (so that X10, e.g., is interpreted as 10 mm, not 
as 10 IJlll), etc. may need to be changed to suit a particular application. 
However, in such cases, first note down the original settings before 
making any change, so that one may revert back to the original values, 
in case of any incorrect setting. Any change must be done by an experi­
enced person, after thoroughly studying the parameter which is 
intended to be changed. The complete description of all the parameters 
can be found in the Parameter Manual supplied with the machine. 

Further discussion necessitates a clear understanding of types of 
parameters. There are, broadly speaking, four types of parameters: bit 
type (permissible data 0 or 1), byte type (permissible data range -128 to 
127, or 0 to 255), word type (permissible data range -32,768 to 32,767, or 
0 to 65,535) and two-word type (permissible data range -99,999,999 to 
99,999,999). The bit-type parameters have rows of eight bits (bit #0 at 
the extreme right and bit #7 at the extreme left). Some bit-type parame­
ters have multiple rows of eight bits in each row, corresponding to each 
machine axis. Several other parameter-types also have multiple rows for 
different axes. On a two-axis lathe, the first row corresponds to the 
X-axis, and the second row to the Z-axis. On a three-axis milling machine, 
the three rows correspond to the X-, Y-, and Z-axes, respectively. Such 
parameters are called axis-type parameters. For the purpose of effective 
memory utilization, different types of parameters are used for different 
applications. For example, I/0 CHANNEL is a byte-type parameter, 
whereas the parameters for setting software overtravellirnits (distances 
in microns, in machine coordinate system) are two-word parameters. 

The format for programmable parameter entry is as follows: 

GlO L50; (Parameter entry mode starts) 

N_ R_; (For parameters other than axis-type) 
N_ P _ R_; (For axis-type parameters) 

(Multiple parameter entry is permitted) 

Gll; (Parameter-entry mode ends) 

where 
L50 selects parameter-entry mode, 
N contains parameter number, 
P contains axis number (used for axis-type parameters only), 
R contains the specified value of the parameter. 
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NoTE: 

1. In a bit-type parameter, it is not possible to change a single bit 
independently. All eight bits must be specified. 

2. A decimal cannot be used in the value specified in the R-word. 

3. Other NC statements cannot be specified between GlO LSO 
and Gll. 

4. If a canned cycle is being used, it must be canceled before 
commanding GlO LSO. 

5. For axis-type parameters, Pl refers to the first row, P2 to the 
second row, and so on . 

6. Inserting sequence numbers in the given format is permitted. 
If two N-words appear in a block, the one at the left is consid­
ered the sequence number, and the other parameter number. 

Example 1 (Word-Type Parameter): 
G-eode that calls custom-macro-program number 09010 is stored in parameter 
6050, on both lathe and milling machine. Therefore, if it is desired to call 09010 
by, say, G100 (any value from 1 to 9999 can be selected; note that the acceptable 
range of a word-type parameter is larger than the defined range for parameter 
6050), 100 would need to be stored in parameter 6050. This can be done by 

GlO L50 ; 
N6050 RlOO; 
Gll; 

Example 2 (Two-Word Axis-Type Parameter): 
It is desired to set external offset to zero, G54 X-offset to 150.123 mm, and G54 
Z-offset to 300.456 mrn on a lathe. The associated parameters are 1220 and 1221, 
respectively. The values are required to be specified in microns. The first row of 
such parameters corresponds to the X-axis, and the second to the Z-axis, on a 
lathe. On a milling machine, the third row would correspond to the Z-axis. The 
desired changes can be done by 

GlO LSO; 
N1220 Pl RO; 
N1220 P2 RO ; 
N1221 Pl R150123; 
N1221 P2 R300456; 
Gll; 

Of course, the G10 L2 method also can be used (which is a bit simpler method), 
which does not directly refer to these parameters: 

GlO L2 PO XO ZO; 
GlO L2 Pl X150 . 123 2300 .45 6 ; 

Note that the distances are specified in millimeters, not in microns. A flexibility 
in G10 L2 method is that changes can be done in both absolute and incremental 
modes. G10 LSO method does not permit incremental changes; R-word always con­
tains the new value. The system-variable method can also be used in this case. 
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Example 3 (Byte-Type Parameter): 
If a compact PCMCIA card is desired to be used as an external memory device, 
parameter 0020 would need to store 4, on both lathe and milling machines. The 
permissible range of this parameter is 0 to 35 (which is smaller than the defined 
range for a byte-type parameter). The desired change can be done by 

Gl O L5 0 ; 
N20 R4; 
Gll; 

When specifying parameter number, leading zeroes can be omitted. Therefore, 
N20 and N0020 are both equivalent in this example. 

Example 4 (Bit-Type Parameter): 
It is desired to use calculator-type decimal input for distances (so that, e.g., X10 
is interpreted as 10 mm, not as 10 (liD). Parameter 3401#0 (which means bit #0, 
the one at the extreme right, of parameter 3401) is required to be set as 1 for 
this. However, the G10 LSO method requires that all the eight bits be specified, 
even if change in just one bit is needed. Let us assume that the current setting of 
parameter 3401 on a lathe is 00000010 (one has to find it out; there is no way out). 
This would need to be changed to 00000011, which can be done by 

Gl O L5 0 ; 
N340 1 ROOOOOOll; 
Gll; 

Note that leading zeroes in the R-word cannot be omitted. 

Example 5 (Bit-Axis-Type Parameter): 
G51/G51.1 is available on a milling machine for mirroring of a selected toolpath. 
If, however, it is desired to always have mirroring for, say, the X-axis, this can be 
more conveniently done by setting parameter 0012#0 to 1 for the X-axis, which 
would obviate the need for using G51/G51.1 for mirroring. Let us assume that 
the current setting of parameter 0012 is 00000000, in the first row (i.e., for X-axis). 
This would need to be changed to 00000001, for the X-axis mirroring. The change 
can be done by 

GlO L50 ; 
N1 2 Pl ROOOOOOOl ; 
Gl l ; 

Another, and a simpler, way to do this is to use system variable for mirroring, 
#3007 (see Table 3.9): 

#300 7 = 1 ; 

A change in parameter 0012#0 automatically changes variable #3007, and vice 
versa. 

In general, if a system variable corresponding to a parameter is 
available, there is no need to use GlO, since the system-variable method 
would be simpler. Moreover, by reading system variables, it is also 
possible to know the current settings (to which one can revert back, if 
so desired), which is not possible with parameters which can only be 
overwritten with new values (if change through a program is desired). 
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Actually, GlO is an older feature that came before macro program­
ming was introduced. Now, it has lost its relevance in many cases. 

A Limitation of G10 LSO Method 
Once a parameter is changed, there is no way it could be reverted 
back to its original value, unless we know its prechange value. (Then 
we can use GlO LSO again with the original values.) GlO LSO only 
overwrites a parameter with a new value(s). In fact, this is true for all 
applications of GlO. It is not possible to "undo" a GlO. While incor­
rect changes in other applications may not have serious implications, 
improper parameter setting may prove to be extremely dangerous. 
Therefore, extreme care must be exercised while using GlO LSO. In 
fact, as a rule of thumb, one should not play with parameters unless 
it is absolutely necessary, and one fully understands the function of 
the parameter which is going to be changed. To be on the safer side, 
one must always keep a backup of the original settings of all the 
parameters. If you do not have an external memory device (such as a 
compact flash card) or RS-232 connection on your machine, or you 
simply do not know how to do the backup, just note down all the 
parameter values on a piece of paper and keep it in a safe place. An 
hour or two spent today may one day save weeks of downtime on the 
machine! 
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APPENDIX A 
List of Complex 

Macros 
Macro Program I Macro Name 

Page 
Number Number 

Chapter 5 Branches and Loops 
1--- ---

I 
·--

08000 SUMMATION OF NUMBERS 83 

08001 CLEARING ALL PERMANENT COMM VARS 85 
·-· ----

08002 STANDARD DEVIATION CALCULATION 87 
--

08003 QUADRATIC EQUATION SOLUTION 89 
--·-·····-··--

08004 SUMMATION OF NUMBERS USING WHILE 
! 

98 
-

08005 CLEARING COMM VARS USING WHILE 99 
1---- -+- -----

08006 STD DEV CALCULATION USING WHILE 101 
--

08007 AGGREGATE MARKS CALCULATION 103 
----· ---······ 

08008 CURR WCS DATUM SHIFT ON MILL M/ C 112 

08009 I CURR WCS Z-DATUM SHIFT ON LATHE 114 
--------- ···-· -- . ----

08010 G56 DATUM SHIFT ON MILL M/ C 114 

08011 G56 Z-DATUM SHIFT ON LATHE 114 
--·--·-- -· 

08012 HOLE ARRAY USING A CANNED CYCLE 116 

08013 HOLE ARRAY USING A NESTED WHILE 116 
-··-·-----

Chapter 7 Macro Call 

09011 REDEFINES G01 ON MILLI NG MACHINE ---[--~:~ -~ ·-····-- -·-· --· -----

09012 I REDEFINES G01 ON LATHE 
' 

Chapter 8 Complex Motion Generation 
---····-

08014 ARC WITH VARYING RADIUS _70 
--

' 08015 ARC WITH VARYING RAD - MODIFIED 171 
---····-·----~- ·----· ··- --· --·-

08016 

I 
VAR RAD ARC WITH ARBIT DEPTH 173 

08017 VAR RAD HELICAL INTERPOLATION 179 
-· -----·---- ---------- -------- ____ ., ______ 

263 
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Macro Program Page 
Number Macro Name Number 

08018 PARABOLIC TURNING WITH G94 185 
---

08019 TURNING A SINE CURVE 190 

Chapter 9 Parametric Programming 

08020 LOCATOR PIN 197 

08021 BOLT HOLES ON A FLANGE 202 

Chapter 10 Custom Canned Cycles 

09011 DEEP HOLE DRILLING ON LATHE 210 

09012 REGRESSIVE PECKING ON MILL M/ C 217 

Chapter 11 Probing 
--------

08022 LOCATING HOLE CENTER ON MILL 230 

08023 WEAR OFFSET CORRECTION ON LATHE 234 

Chapter 13 Programmable Data Input 
··-·--

I 
08024 I CLEA~ __ LATHE OF~~~TS WITH G10 258 

08025 CLEAR LATHE OFFSETS WITH SYSVAR 258 
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List of Parameters 

Parameter 
Number Purpose Page Number 

0012#0 X-axis mirroring 261 

0020 lnputj output channel selection 148, 261 
.. 

-~·· --
0102 Selection of 1/ 0 device such as Fanuc I 148 

Handy File when 0020 is set to 0 

1220 External offsets 260 
---· 

1221 G54 offsets 260 

1300 series Software overtravel limits 107 
-

1401#1 Rapid positioning in a straight line, i.e. , 1 133 
without dog-leg effect I - -·--- --·· 

1827 In-position widths along different axes 163 
during feed motion (valid when 
1801#4 = 1) 

3202#0 Edit-protection of programs in the range 83, 138 
08000 - 08999 

- ~--

3202#4 Edit-protection of programs in the range 83, 138 
09000 - 09999 

-·· 
3202#6 Display of program numbers of edit- 84 

protected programs in directory search 
---- -·--·-

3203#7 Retaining MDI program even after 25 
control reset 

--
3204#0 Selection between square bracket and 14 

parenthesis on a small MDI keyboard 

3204#2 Display of soft keys for "(" , ") ," and "@" 15 
on a small MDI keyboard 

3204#6 Retaining MDI program after execution 24 
is over 

-

265 
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Parameter 
Number Purpose Page Number 

3401#0 
1 

Calculator-type decimal number 15, 22,261 
I interpretation 

----------·-- ---···-·····-·· 

3404#6 Missing M30/ M02 at program end 115 
····-

3411-3420 M-codes for preventing buffering 163, 166 

3451#2 Spindle speed specification up to one 20 
decimal point on a milling machine 

-·--··-······· -···-·····-

6000#3 ! Interchanging wear and geometry 44 
1 system variable numbers on a milling 

machine 
------ ·-· ---

6000#5 Single-block execution of macro 17 
statements 

---·· 

6001#5 Subprogram call using a T-code 150 
1--- -- ---------~ ·-····· 

6001#6 
1 

Retaining common variables even after 29 
' control reset 

-- -··--·--

6001#7 Retaining local variables even after 29 
control reset 

·-··-···-- --

6004#0 Solution range of ATAN 61, 233 

6004#1 Normalization of SIN/ COS/ TAN values 63 
to zero, for angles close to oo ; goo 

·--

6006#0 Availability of AND/ OR/ XOR as Boolean 73,82 
functions in logical statements 

····-

6006#1 Modal information up to previous/ 52 

)--· 
current block on a milling machine 

6030 M-code for subprogram call from an 148 
external input/ output device (such as 
M198) 

-····· ----

6050-6059 G-eodes for macro calls 146, 156, 214 
---· 

6071-6079 M-codes for subprogram calls 148 
-----

6080-6089 M-codes for macro calls 147 
-----·····-·· 

6700#0 M-codes for part count increment 49 
-----··· ------ . -· 

6710 Additional M-code for part count 49 
increment 

·-···--

6711 Number of parts produced 49 

6712 Total number of parts produced I 49 
I ------···- -·-····- ·······-

6713 Number of parts required to be 49 
, produced 
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Variable Purpose Page 

#0 Null variable 22

#1 − #33 Local variables 28

#34 − #99 Not available 28

#100 − #199 Common variables 28

#200 − #499 Not available 28

#500 − #999 Permanent common variables 28/29

(same as common variables, with the 

difference that the stored values in these are

not cleared by reset or power cycle)

#1000 − #1015 Correspond to input interface signals 40/41

and #1032 (G54.0 − G54.7, G55.0 − G55.7)

#1100 − #1115 Correspond to output interface signals 40/41

and #1132 (F54.0 − F54.7, F55.0 − F55.7)

#2001 − #2064 X-axis wear offsets 42

(on a lathe with 64 offset numbers)

#2001 − #2200 Tool length wear offsets 44

(with parameter 6000#3 = 0, on a milling

machine with 200 offset numbers)

#2101 − #2164 Z-axis wear offsets 42

(on a lathe with 64 offset numbers)

#2201 − #2264 Nose radius wear offsets 42

(on a lathe with 64 offset numbers)

#2201 − #2400 Tool length geometry offsets 44

(with parameter 6000#3 = 0, on a milling

machine with 200 offset numbers)

#2301 − #2364 Tool-tip directions 42

(on a lathe with 64 offset numbers)

#2500 − #2800 External offsets (on milling machines only) 55

#2501 − #2801 G54 offsets (on milling machines only) 55

#2502 − #2802 G55 offsets (on milling machines only) 55

#2503 − #2803 G56 offsets (on milling machines only) 55

List of Macro Variables
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#2504 − #2804 G57 offsets (on milling machines only) 55

#2505 − #2805 G58 offsets (on milling machines only) 55

#2506 − #2806 G59 offsets (on milling machines only) 55

#2501 X-axis WCS shift amount (on lathes only) 44

#2601 Z-axis WCS shift amount (on lathes only) 44

#2701 − #2764 X-axis geometry offsets 42

(on a lathe with 64 offset numbers)

#2801 − #2864 Z-axis geometry offsets 42

(on a lathe with 64 offset numbers)

#2901 − #2964 Nose radius values (geometry offsets) 42

(on a lathe with 64 offset numbers)

#3000 Macro alarm (terminates program execution 45

with an alarm , which cannot be restarted)

#3001 Current session total on-time timer 46

(with 1-ms increment)

#3002 All sessions run-time timer 46

(stores cumulative on-time of CYCLE

START lamp, in hour)

#3003 Automatic operation control 47

(single block execution and completion of

auxiliary functions)

#3004 Automatic operation control 47

(feed hold, feed override and exact stop

check)

#3006 Macro message (temporarily stops program 48

execution which can be restarted by

pressing CYCLE START button again)

#3007 Mirror-image information 48

#3011 Current date 46

(in YYYYMMDD decimal format)

#3012 Current time 46

(in 24-hour HHMMSS decimal format)

#3901 Number of parts completed 49

(in the current machining session)

#3902 Number of parts required 49

(in the current machining session)
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Variable Purpose Page 

#4001 − #4120 Modal information on a lathe 50/51

#4001 : G00, G01, G02, G03, G32, G34,

             G71 − G74 (G71 − G74 apply to

             grinding machines only)

#4002 : G96, G97

#4004 : G68, G69

#4005 : G98, G99

#4006 : G20, G21

#4007 : G40, G41, G42

#4008 : G25, G26

#4009 : G22, G23

#4010 : G80 − G89

#4012 : G66, G67

#4014 : G54 − G59

#4016 : G17, G18, G19

#4109 : F-code (feedrate)

#4113 : M-code number

#4114 : Sequence number

#4115 : Program number

 #4119 : S-code 

            (stores rpm in G97 mode and

            surface speed in G96 mode)

#4120 : T-code 

            (tool number with offset number)

#4001 − #4130 Modal information on a milling machine 51/52

#4001 : G00, G01, G02, G03, G33

#4002 : G17, G18, G19

#4003 : G90, G91

#4005 : G94, G95

#4006 : G20, G21

#4007 : G40, G41, G42

#4008 : G43, G44, G49

#4009 : G73, G74, G76, G80 − G89

#4010 : G98, G99

#4011 : G50, G51

#4012 : G66, G67
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Variable Purpose Page 

#4001 − #4130 Modal information on a milling machine 51/52

#4013 : G96, G97

#4014 : G54 − G59

#4015 : G61 − G64

#4016 : G68, G69

#4102 : B-code number

#4107 : D-code number

#4109 : F-code (feedrate)

#4111 : H-code number

#4113 : M-code number

#4114 : Sequence number

#4115 : Program number

 #4119 : S-code 

            (stores rpm in G97 mode and

            surface speed in G96 mode)

#4120 : T-code (tool number)

#4130 : P-code number of  (if currently

             active) G54.1 P1 − G54.1 P48

#5001 − #5004 Block end point in WCS 53

#5021 − #5024 Current tool position in MCS 53

#5041 − #5044 Current tool position in WCS 53

#5061 − #5064 Skip-signal position in WCS 53

#5081 X-axis wear offset value currently active 53

on a two-axis lathe

#5082 Z-axis wear offset value currently active 53

on a two-axis lathe

#5083 Tool-length wear offset value currently 53

active on a VMC

#5101 − #5104 Deviated servo position 53

#5201 − #5204 External offsets 54

#5221 − #5224 G54 offsets 54

#5241 − #5244 G55 offsets 54

#5261 − #5264 G56 offsets 54

#5281 − #5284 G57 offsets 54

#5301 − #5304 G58 offsets 54

#5321 − #5324 G59 offsets 54
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Variable Purpose Page 

#7001 − #7004 G54.1 P1 offsets 54

#7021 − #7024 G54.1 P2 offsets 54

#7041 − #7044 G54.1 P3 offsets 54

Continued series G54.1 P4 − P47 offsets 54

#7941 − #7944 G54.1 P48 offsets 54

(Note: G54.1 P1 to P48 are optionally

available on milling machines only)

#10001 − #10099 X-axis wear offsets 43

(on a lathe with 99 offset numbers)

#10001 − #10400 Tool length wear offsets 44

(with parameter 6000#3 = 0, on a milling

machine with 400 offset numbers)

#11001 − #11099 Z-axis wear offsets 43

(on a lathe with 99 offset numbers)

#11001 − #11400 Tool length geometry offsets 44

(with parameter 6000#3 = 0, on a milling

machine with 400 offset numbers)

#12001 − #12099 Nose radius wear offsets 43

(on a lathe with 99 offset numbers)

#12001 − #12400 Tool radius wear offsets 44

(with parameter 6000#3 = 0, on a milling

machine with 400 offset numbers)

#13001 − #13099 Tool-tip directions 43

(on a lathe with 99 offset numbers)

#13001 − #13400 Tool radius values (geometry offsets) 44

(with parameter 6000#3 = 0, on a milling

machine with 400 offset numbers)

#15001 − #15099 X-axis geometry offsets 43

(on a lathe with 99 offset numbers)

#16001 − #16099 Z-axis geometry offsets 43

(on a lathe with 99 offset numbers)

#17001 − #17099 Nose radius values (geometry offsets) 43

(on a lathe with 99 offset numbers)
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APPENDIX  D

Argument Specification I

Address  Variable Number Address  Variable Number

A #1 Q #17

B #2 R #18

C #3 S #19

D #7 T #20

E #8 U #21

F #9 V #22

H #11 W #23

I #4 X #24

J #5 Y #25

K #6 Z #26

M #13
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APPENDIX  E

Argument Specification II

Address Variable number Address Variable number

A #1 I6 #19

B #2 J6 #20

C #3 K6 #21

I1 #4 I7 #22

J1 #5 J7 #23

K1 #6 K7 #24

I2 #7 I8 #25

J2 #8 J8 #26

K2 #9 K8 #27

I3 #10 I9 #28

J3 #11 J9 #29

K3 #12 K9 #30

I4 #13 I10 #31

J4 #14 J10 #32

K4 #15 K10 #33

I5 #16

J5 #17

K5 #18
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#symbol, 13 
*(multiplication) operator, 59 
[] (square brackets): 

expressions, 13- 14 
functions, 61 

+(addition) operator, 59 
I (block skip function symbol), 60 
I (division) operator, 59---{;0 
; (end-of-block symbol), 10, 49 
- (subtraction) operator, 59 

- A-
ABs (absolute value) function, 

67-68 
Absolute coordinate mode, 219 
Absolute form (Z-word), 210 
Absolute mode, 126 
Absolute value (ABS) function, 67-68 
ACOS function, 60---{;3 
Active coordinate system, 108 
AC-type input, 239 
Addition(+) operator, 59 
Adjusting wear offset, 233-236 
Alarm (error condition), 34 
AND logical function, 69 
Angle of edge, finding, 231-233 
Arbitrary exponent of numbers, 69 
Arc: 

clockwise, 170-171 
with uniformly varying radius, 

167-175 
Argument specification, 151-162 
Argument specification: 

example of G-eode macro call with 
arguments, 155-162 

method I, 152-153 
method II, 153-154 
mixed, 154-155 

Argument specification I: 
defined, 151 
overview, 152-153 

Index 

Argument specification II: 
defined, 151 
overview, 153-154 

Arithmetic expressions: 
in conditional branching, 81 
priority of operations in, 57-58 

Arithmetic operations: 
division versus block-skip 

function, 60 
on macro variable numbers, 

103-115 
null variables in, 23 
overview, 59---{;0 

ASIN function, 60-63 
ATAN function, 60-63 
Automatic operation control, 45-47 
Automatic operation mode (memory 

mode),24 
Auxiliary functions, completion of, 

46-47 

- B­
Bar-coding, 75 
BCD (binary-coded decimal) function, 

75-77 
BIN function, 75-77 
Binary interpreta tions, 76 
Binary signals, 39-40 
Binary-coded decimal (BCD) function, 

75-77 
Bit type parameter, 259-261 
Bitwise functions, 69-71 
Bitwise operations: 

application example of, 73-75 
Boolean versus, 72-73 

Block number (sequence number), 79 
Block skip function symbol(/), 60 
Block-skip function, 60 
Blue print programming 

(conversational programming), 3 
Bolt holes on flange, 200--205 

267 
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268 In dex 

Boolean expressions (conditional 
expressions), 14,58 

Boolean functions, 71-72 
Boolean operations: 

bitwise versus, 72-73 
enabling, 73 

Branches: 
conditional branching, 80-92 
conditional execution of single 

macro statement, 93-94 
execution in loop, 94-103 
nested WHILE statement, 115-120 
unconditional branching, 79-80 

Built-in canned cycle, 207 
Byte type parameter, 259-261 

- c-
CALCULATED DATA OVERFLOW 

alarm message, 34, 68 
Calling program, defined, 31 
CAM software, 3-4 
Canned cycles: 

custom, 6-7, 207-221 
deep-hole peck drilling on lathe, 

207-215 
drilling with reducing peck 

lengths on milling machine, 
215-221 

overview, 207 
defined, 188 
specifying dwell value or peck 

distance, 201 
Center of hole, finding, 228-231 
CNC (computer numerical control) 

machines, defined, 1 
Common variables, 28 
Communication with external devices, 

8-9,37,237-250 
connector pin assignment, 240-244 
discrete sensors for sourcing I 

sinking PLC inputs, 244-246 
input types and wiring, 239-240 
output types and wiring, 246-250 
overview, 237 
switching principle, 237-239 

Compensation values: 
on lathe, 255- 258 
on milling machine, 254-255 

Complex motion generation, 5, 
167-192 

arc with uniformly varying radius, 
167-175 

helical interpolation with variable 
radius, 175-181 

overview, 167 
parabolic turning, 181-187 

roughing operation, 184 
step-removal operation, 184-187 

turning sine curve, 188- 192 

Component zero point, 106 
Computer numerical control (CNC) 

machines, defined, 1 
Conditional branching, 80-92 
Conditional execution, 93-94 
Conditional expressions (Boolean 

expressions), 14, 23-24, 58 
Conditional operators, 7, 14 
Conditional statements, 7 
Connector pin assignment, 240-244 
Control parameters, 6 
Conventional part programming, 2-3 
Conversational part programming, 3 
Conversion functions, 75-77 
COS function, 60-63 
Current status, 35 
Current tool position, 52-55 
Custom canned cycles, 6-7, 207-222 

deep hole peck drilling on lathe, 
207-215 

drilling with reducing peck lengths 
on milling machine, 215-222 

overview, 207 
Custom macro, defined, 6 
CYCLE START button, 7, 17,45 

- o-
Data in (DI) signals, 38 
Data out (DO) signals, 38 
Datum shift (see Zero shift) 
D-code values, 254 
DC-type input, 239 
Deep-hole peck drilling, 207-215 
DI (data in) signals, 38 
Diameter programming, 183 
Dimensional value without a decimal 

point, 22 
DIP (dual in-line package) switch, 74 
Direct dimension programming 

(conversational programming), 3 
Discrete sensors, 244-246 
Division (!) operator, 59-60 
DO (data out) signals, 38 
DO_END_ ranges, 96 
dual in-line package (DIP) switch, 74 
Dynamic graphic display, 24, 115 

- E-
Emulated Fanuc controls, 11 
End-of-block (EOB) symbol (;), 

10,49 
Equal to (EQ) null variable, 23 
Error condition (alarm), 34 
Error diagnosis, 83 
Exact stop mode, 163 
Execution in loop, 94-103 
Execution pause, 48 
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Execution trace: 
of algorithm for calculating 

aggregate marks, 104 
of algorithm for clearing all 

permanent common variables 
86,99 ' 

of summation algorithm, 83, 98 
EXP (exponential value) function, 

68--69 
Explicit rounding, 63 
External coordinate system, 107 
External devices, communica tion with 

8-9,37,237-250 ' 
connector pin assignment, 240-244 
discrete sensors for sourcing/ 
. sinkmg PLC inputs, 244-246 
mput types and wiring, 239-240 
output types and wiring, 246-250 
overview, 237 
switching principle, 237-239 

External workpiece coordinate system 
107 ' 

- F-
Families of parts, 5-6, 193 
Fanuc Oi series controls system 

variables on, 36 
Fanuc handy file, 148 
Feedrate in helical interpolation 

1~ ' 
Finding: 

angle of edge, 231-233 
center of hole, 228-231 
roots of quadratic equation, 90 

FIX function, 64--67 
Flange, bolt holes on, 200-205 
Flexible automation, 4 
Flowcharts: 

calculating aggregate marks, 104 
calculating sample standard 

deviation, 87, 100 
clearing all permanent common 

variables, 86, 99 
drilling holes on plate, 117 
finding roots of quadratic equation 

90 ' 
making groove of specified depth, 

129, 132 
sum of series, 92, 102 
summation algori thm, 82-83, 98 
WHILE sta tement, 95,98-100, 102, 

117, 129 
FORMAT ERROR IN MACRO alarm 

message, 72 
FORTRAN language, 122 
F-signals, 38-39 
Function evaluation null variables in 

23 ' 
FUP func tion, 64--67 

Index 269 

- G-
G1o code, 41--42,251-262 

in absolute/incremental mode, 252 
compensa tion values, 254-256 
limitations of, 262 
parameter values, 258-261 
WCS offset distances, 252-253 

G65 code, 6, 138-141 
G66 code, 6, 138, 141-145 
G-eodes, 6, 21 

completion of auxiliary functions 46 
inside a program called by G/MfT 

code, 147, 157 
user-defined, 145-147,207 

Geometry offset, 233, 40--43 
Global variables, 27- 28 
GOTO statement, 79, 80, 94 
G-signals, 38 

- H-
H-code values, programmable­

data-entry format, 254 
Helical interpolation with variable 

radius, 175-181 
feedrate, 175 
synchronized linear motion 175 

High-speed peck drilling eye!~, 215 
Hole, conical shape at the bottom, 213 

- I -
IF conditional statement, 71 
IF _GOTO_ sta tement, 79, 94, 131 
IF _THEN_ statement, 92 
ILLEGAL ARGUMENT alarm 

message, 67, 77 
ILLEGAL VARIABLE NUMBER alarm 

message, 41 
Implicit rounding, 63--64 
In-position width, 163 
Input: 

signals, 40, 237, 240-241 
wiring and types of, 239-240 

INPUT key, MDI panel, 112 
Integers 

logical functions and, 70 
versus real values, 19-22 

"Intelligent" programs, 7 
Interface signals, 40--41 
I/0 unit, PMC, 39 

- J­
Jumping inside loop, 97 

- L­
Ladder diagram, 9, 37 
Ladderlanguage,237 
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270 Index 

Lathe: 
compensation values on, 255-258 
deep-hole peck drilling on, 207-215 
rear-type, 257 
system variables for offsets, 42 

Lead-through programming 
(conversational programming), 3 

Least input increment, 66 
Letter addresses: 

argument specification I, 152 
argument specification II, 153 
selected: parabolic turning, 185 

sine curve turning, 189 
variable radius helical interpolation, 

179 
Limit switch, 244 
Line number (sequence number), 

79 
LN (natural logarithm) function, 

68 
Local variables: 

levels of, 29-33 
overview, 27-28 

Locator pin, 194--200 
LOG function, 68 
Logical flaw, 66 
Logical functions, 69-75 

bitwise functions, 69-71 
bitwise operations: application 

example of, 73-75 
Boolean versus, 72-73 

Boolean functions, 71-72 
Boolean operations: bitwise versus, 

72-73 
enabling, 73 

Loops 
execution in, 94--103 
jumping inside, 97 
(See also Branches) 

- M­
M198, 148 
M98 code, 6, 84, 122, 148 
M99 code, 84, 122 
Machine coordinate system (MCS) 

(machine zero point), 107 
Machine macro, defined, 6 
Machine operator's panel (MOP), 9 
Machine status information/ 

manipulation, 8 
Machine tool builders (MTB), 5 
Macro alarms, 44--45 
Macro call, 137-162 

argument specification, 151-162 
example of G-eode macro call 

with arguments, 155-162 
method I, 152-153 
method II, 153-154 
mixed, 154--155 

Macro call (Cont.): 
modal, 141-145 
overview, 137-138 
simple, 138-141 
subprogram call: M-code, 148-150 

T-code, 150- 151 
subprogram versus, 137 
with user-defined G-eode, 145-147 
with user-defined M-code, 147-148 

Macro call statement, 137 
Macro expressions, 13-16 
Macro functions, 57-77 

arithmetic operations: division 
versus block-skip function, 60 

overview, 59-60 
conversion, 75-77 
logical, 69-75 

application example of bitwise 
operation, 73-75 

bitwise functions, 69-71 
bitwise versus Boolean 

operations, 72-73 
Boolean functions, 71-72 
enabling Boolean operations, 

73 
miscellaneous, 67-69 

ABS, 67-68 
arbitrary exponent of number, 

69 
EXP, 68-69 
LN,68 
SQRT, 67 

rounding: FIX, 64--67 
FUP,64-67 
overview, 63-64 
ROUND, 64-67 

trigonometric, 60-63 
types of, 57-59 

effect of order of calculations, 
58-59 

nesting of brackets, 59 
priority of operations in 

arithmetic expressions, 
57- 58 

priority of operations in Boolean 
expressions, 58 

Macro programming: 
a simple use of, 24 
applications of: communication with 

external devices, 8-9 
complex motions, 5 
custom canned cycles, 6-7 
families of parts, 5-6 
"intelligent" programs, 7 
machine status information/ 

manipulation, 8 
overview, 4--5 
probing, 7-8 

defined, 4 
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Macro statements, 17 
Macro statements, processing of, 

163-166 
buffering, defined, 163 
effect of buffering on program 

execution, 165-166 
number of buffered blocks, 163 
processing in radius 

compensation mode, 164 
processing of buffered blocks, 163 
processing when the next block is 

not buffered, 163-164 
processing in radius compensation 

cancel mode, 164 
Macro variables (see Variables) 
Macros: 

availability as an optional feature on 
machine, 9-10 

defined, 6 
Main program, defined, 6 
Maintained-type ON/ OFF switch, 244 
Manual data input (MDI) mode, 9, 12 

retaining programs in, 24-25 
Manual pulse generator (MPG), 38, 241 
M-codes, 6 

for preventing buffering, 166 
subprogram call, 148-150 
user-defined, 147-148 

MCS (machine coordinate 
system)machine zero point (), 107 

MDI mode (see Manual data input 
(MDI) mode) 

Memory mode (automatic operation 
mode), 24 

MESSAGE key, 44-45 
Milling machine: 

compensation values on, 254-255 
drilling with reducing peck lengths 

on,215-222 
helical interpolation, 175-176 
work offset display, 110-111 

Mirror image information, 48 
Mirror image setting screen, 48 
Mixed mode arithmetic, 15 
Modal call (G66), 138, 141-145 
Modal data, 49-52, 142 
Momentary-type ON /OFF switch, 

244 
MOP (machine operator's panel), 9 
MOSFET switching techruque, 246-247 
Motion generation (see Complex 

motion generation) 
MPG (manual pulse generator), 38, 241 
MTB (machine tool builders), 5 
Multiple call of subprogram, 125-132 
Multiple facing cycle, 183 
Multiple G66 blocks, 143-144 
Multiple turning cycle, 183 
Multiplication(*) operator, 59 

Index 271 

- N­
Naturallogarithm (LN) function, 

68 
NC (numerically controlled) machines, 

defined, 1 
NC statements, 17,93-94 

buffering and, 163 
radius compensation mode, 

164-165 
N-channel MOSFET, 247-248 
NE (not equal to) null variable, 23 
Nested brackets, 59, 81-82 
Nested expressions, 13 
Nested macros, 30,32 
Nested subprograms, 32, 132-135 
Nested WHILE statements, 96, 

115-120 
Neutral tool, 192 
N-number (sequence number}, 79 
N/0 (normally open) limit switches, 

74,244 
Nonmodal codes, 49 
Nose number (tool-nose/tip number), 

257 
Nose radius values, 42-43 
Not equal to (NE) null variable, 23 
NPN transistor, 237-238 
NPN-type sensor, 245 
Null variables (vacant variables): 

in arithmetic operations, 23 
in conditional expressions, 23-24 
in word addresses, 22-23 

NUMBER NOT FOUND alarm 
message, 146, 150 

Number of machined parts, 48-49 
Numerically controlled (NC) 

machines, defined, 1 

- o­
Offset correction: 

for external tool, 233 
in incremental mode, 252 

Offset distances, 106 
Offset/setting screen, 10 
Optoisolator, 238 
OR logical function, 69 
Order of calculations, 58-59 
Output signals, 40 
Output types, wiring and, 246-250 

- P-
Parabolic turning, 181-187 

parameters of, 185 
roughing operation, 184 
step-removal operation, 184-187 

Parameter values, data input for, 
258-262 

Parameters (system parameters), 35 
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272 Index 

Parametric programming, 6, 193-205 
bolt holes on flange, 200-205 
families of parts, 5, 193 
locator pin, 194-200 
overview, 193-194 

Part programming techniques, 2-4 
conventional part programming, 

2-3 
conversational part programming, 

3 
macro programming, 4 
method comparison, 4 
using CAM software, 3-4 

PASCAL programming language, 
12, 103 

Pattern repeating cycle, 182, 183 
PCB (printed circuit board), 74 
P-channel MOSFET, 247 
Peck drilling: 

deep hole, 207-215 
with reducing peck lengths, 

215-222 
regressive, 215-216 

Permanent common variables, 10, 28--29 
Pins: 

connector, 240-244 
locator, 194-200 

PLC (programmable logic controller), 
8,37 

PMC (programmable machine 
control), 37-38 

PNP-type sensor, 245 
Pockets, probing, 224-228 
Printed circuit board (PCB), 74 
Priority of operations: 

in arithmetic expressions, 57-58 
in Boolean expressions, 58 

Probing,?-8,223-236 
adjusting wear offset, 233-236 
finding angle of edge, 231-233 
finding center of hole, 228-231 
overview, 223-224 
pockets, 224-228 
skip function, 224 

PROG function key, MDI panel, 9 
Program zero point, 106 
Programmable data input, 251-262 

for compensation values: on lathe, 
255-258 

on milling machine, 254-255 
overview, 251-252 
for parameter values, 258-262 
for WCS offset distances, 252-253 

Programmable logic controller (PLC), 
8,37 

Programmable machine control 
(PMC), 37-38 

Programmable parameter entry, 258 
Proximity-sensors, discrete, 245 

- R-
Radio frequency (RF) tag, 75 
Range of values stored in variables, 

33-35 
Read-only variables, 52-53 
Real versus integer values, 19-22 
Recurrence relation, 91-92 
Redefining G01, 155-156 
Regressive peck drilling cycle, 

215-216 
Repeated call of macro, 143 
Repetition count, 125, 138 
RESET key, 10 
RF (radio frequency) tag, 75 
Ribbon cables, 39 
Roll-over screen, 10 
Roughing cycle (multiple turning 

cycle), 183 
Roughing operation in parabolic 

turning, 184 
ROUND function, 64-67 
Rounding functions: 

FIX, 64-67 
FUP, 64-67 
overview, 63-64 
ROUND, 64-67 

- s­
saturation mode, 238 
Selected letter addresses: 

in parabolic turning, 185 
variable radius helical interpolation, 

179 
sine curve turning, 189 

Sequence number, 79 
Series summation flowchart, 102 
Simple call (G65), 138-141 
Single-pole, single-throw (SPST) 

contacts, 74 
SIN function, 59-63 
Sine curve turning, 188-192 
Single call of macro, 143 
Sinking sensor, 245, 247 
Sink-type DI signals, 241 
Sink-type sensor, 245 
16-bit signals, 40 
Skip function, 224-225 
Skip signal, 223, 225 
Source-type outputs, 249 
Sourcing sensor, 245-246 
Spindle-type dial indicator, 228 
Spring system, probe, 224 
SPST (single-pole, single-throw) 

contacts, 74 
SQRT (square root) function, 59, 67 
Square brackets ([ ]): 

expressions, 13-14 
functions, 61 

Square root (SQRT) function, 59, 67 
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Step-removal operation in parabolic 
turning, 184-187 

Stock removal cycle (multiple turning 
cycle), 183 

Subprograms, 121-135, 148-151 
calls, 122-125, 148-151 
defined, 6, 121 
macro call versus, 137 
multiple calls, 125-132 
nesting, 132-135 
purpose of, 121 
subroutines of conventional 

computer language versus, 122 
Subtraction(-) operator, 59 
Switching principle, 237-239 
System parameters, 35-36 
System reset effect on macro variables, 

28-29 
System variables, 35-55 

automatic operation control, 45-47 
current tool position, 52-55 
displaying, 36-37 
execution pause, 48 
on Fanuc Oi series controls, 36 
geometry and wear offset values, 40-43 
interface signals, 37-40 

input, 40 
output, 40 

macro alarms, 44-45 
mirror image information, 48 
modal information, 49-52 
number of machined parts, 48-49 
system parameters versus, 35-36 
time information, 45 
work offset values, 55, 111 
workpiece coordinate system shift 

amount, 43-44 
zero shift through, 108-110 

- T­
TAN function, 60-63 
Three-axis milling machine, 175-176 
Through-coolant drill, 208 
Time information, 45 
Timer / part count screen, 45 
Tip number (Tool-tip / nose number), 

257 
TOO MANY DIGITS alarm message, 18 
Tool probe, 223 
Tool-tip directions (tip number), 

system variables for, 42-43 
Touch probes, 115, 223, 232 
Trigonometric functions, 60-63 
Turning: 

parabolic, 181-187 
parameters of, 185 
roughing operation, 184 
step-removal operation, 184-187 

sine curves, 188-192 

Two-level nesting, example of, 
133-135 

Index 273 

Two-word type parameter, 259-261 

- u-
unconditional branching, 79-80 
Undefined variables, 22-24 

in arithmetic operations, 23 
in conditional expressions, 23-24 
in word addresses, 22- 23 

User-defined G-eodes, 145-147 
User-defined M-codes, 147- 148 

- v-
vacant variables (see Null variables) 
Variable radius helical interpolation, 

179 
Variables: 

argument specification I, 152 
argument specification II, 153 
assigning values to, 16-18 
common, 28 
display of, 10, 18-19 
effect of system reset on, 28-29 
global, 27-28 
local, levels of, 29-33 

overview, 27-28 
overview, 13 
permanent common, 28-29 
predefined, 22, 28 
range of values stored in, 33-35 
real versus integer values, 19-22 
system, 35-55 

automatic operation control, 45-47 
current tool position, 52-55 
displaying, 36-37 
execution pause, 48 
on Fanuc Oi series controls, 36 
geometry and wear offset values, 

40-43 
interface signals, 37-40 
macro alarms, 44-45 
mirror image information, 48 
modal information, 49-52 
number of machined parts, 48-49 
system parameters versus, 35-36 
time information, 45 
work offset values, 55, 111 
workpiece coordinate system shift 

amount, 43-44 
undefined variables, 10, 22- 24 

in arithmetic operations, 23 
in conditional expressions, 23-24 
in word addresses, 22-23 

Venn diagram: 
for bitwise functions, 69-70 
for Boolean functions, 72 
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- w-
wcs (workpiece coordinate system), 

43-44,107-108, 252-253 
Wear offset values: 

adjusting, 233-236 
system variables, 40--43 

WHILE sta tement, 71 
creating loops using, 94 
conditional execution of certain 

blocks once, 103 
flowcharts, 95,98-100, 102, 117, 129 
nested, 96, 115-120 
part requiring three levels of 

nesting, 120 
Wiring: 

input types and, 239-240 
output types and, 246-250 

Word addresses: 
format, 145 
null variables in, 22-23 

Word-type parameter, 259-261 
Work offset values: 

on milling machine, 110-111 
system variables for, 55, 111 

Work probe, 223 
Workpiece coordinate system (WCS), 

43--44,107-108,252-253 

Workpiece shift screen, 43 
Workpiece zero point, 106, 231 

- x-
x-axis offset values (X-offsets), 42--43, 

106 
XOR logical function, 69 
X-signals, 38 

- v­
Y-signals, 38 
Y-offset, 106 

- z-
z-axis offset values (Z-offsets), 42--43, 

106 
Z-datum: 

deep-hole peck drilling, 210 
workpiece zero point, 122 

Zero shift (datum shift): 
by manipulating offset distances, 

109 
overview, 106 
through program, 111- 115 
through system variables, 109-110 
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